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Abstract
This work studies the connection between the problem of

analyzing floating-point code and that of function minimiza-

tion. It formalizes this connection as a reduction theory,

where the semantics of a floating-point program is measured

as a generalized metric, called weak distance, which faith-
fully captures any given analysis objective. It is theoretically
guaranteed that minimizing the weak distance (e.g., via math-

ematical optimization) solves the underlying problem. This

reduction theory provides a general framework for analyzing

numerical code. Two important separate analyses from the

literature, branch-coverage-based testing and quantifier-free

floating-point satisfiability, are its instances.

To further demonstrate our reduction theory’s generality

and power, we develop three additional applications, includ-

ing boundary value analysis, path reachability and overflow

detection. Critically, these analyses do not rely on the mod-

eling or abstraction of floating-point semantics; rather, they

explore a program’s input space guided by runtime compu-
tation and minimization of the weak distance. This design,

combined with the aforementioned theoretical guarantee,

enables the application of the reduction theory to real-world

floating-point code. In our experiments, our boundary value

analysis is able to find all reachable boundary conditions

of the GNU sin function, which is complex with several

hundred lines of code, and our floating-point overflow de-

tection detects a range of overflows and inconsistencies in

the widely-used numerical library GSL, including two latent

bugs that developers have already confirmed.

CCS Concepts • Theory of computation → Program
analysis.

Keywords Program Analysis, Mathematical Optimization,

Theoretical Guarantee, Floating-point Code
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1 Introduction
Modern infrastructures, from aerospace and robotics to fi-

nance and physics, heavily rely on floating-point code. How-

ever, floating-point code is error-prone, and reasoning about

its correctness has been a long-standing challenge. The main

difficulty stems from the subtle, albeit well-known, semantic

discrepancies between floating-point and real arithmetic. For

example, the associativity rule in real arithmetic a+ (b +c) =
(a + b) + c does not hold in floating-point arithmetic.

1
Con-

sider the C code in Fig. 1(a) for a further motivating exam-

ple. We assume the rounding mode is the default round-to-

nearest as defined in the IEEE-754 standard. The code may

appear correct upon first sight. However, if we set the input

to 0.999 999 999 999 999 9, the branch “if (x < 1)” will be
taken, but the subsequent “assert (x + 1 < 2)” will fail
(x + 1 = 2 in this case). Now, if we run the same code un-

der a different rounding mode, say round-toward-zero, the

assertion becomes valid.

void Prog(double x) {

if (x < 1){

x = x + 1;

assert(x < 2);

}}

(a)

void Prog(double x) {

if (x < 1){

x = x + tan(x);

assert(x < 2);

}}

(b)

Figure 1. Motivating examples: Do the assertions hold?

To reason about such counterintuitive floating-point be-

havior, one may believe that a formal semantic analysis is

necessary. Indeed, state-of-the-art SMT solvers such as Math-

SAT [10] can determine that the floating-point constraint

x < 1 ∧ x + 1 ≥ 2 is satisfiable under the round-to-nearest

mode and unsatisfiable under the round-toward-zero mode.

However, the tight coupling between analysis and semantics

1
Onemay verify that, on a typical x86-64 machine with the round-to-nearest

mode, 0.1+ (0.2+0.3) = 0.6, but (0.1+0.2)+0.3 = 0.600 000 000 000 000 1.

https://doi.org/10.1145/3314221.3314632
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can quickly become problematic for real-world code involv-

ing floating-point arithmetic operations, nonlinear relations,

or transcendental functions. Suppose we change “x = x +
1” to “x = x + tan(x)” as shown in Fig. 1(b). SMT-based

methods will find it difficult to reason about tan(x) because
the implementation of tan(x) is system-dependent, and its

semantics is not standardized in IEEE-754 [1].

Recent work has introduced two highly effective floating-

point analyses that do not need to directly reason about

program logic [16, 17]. Both analyses drastically outper-

form traditional techniques. The first is for achieving high

branch coverage in floating-point code [17]. It transforms the

program under test into another program whose minimum

points trigger uncovered conditional branches. The analysis

achieves an average of 90%+ branch coverage within seconds

on Sun’s math library code. The second concerns floating-

point constraint satisfiability [16]. A floating-point formula

in conjunctive normal form (CNF) is transformed into a pro-

gram whose minimum points correspond to the models of

the formula. A Monte Carlo optimization backend is applied

to find these models, if any. The solver produces consistent

satisfiability results as both MathSAT and Z3 with average

speedups of over 700X on SMT-competition benchmarks.

This work generalizes these ideas and develops a unified

theory that applies to a broad category of floating-point anal-

ysis problems. The theory consists of a faithful reduction

procedure from the problem domain of floating-point anal-

ysis to the problem domain of mathematical optimization.

At the core of theory, floating-point program semantics is

measured as a generalized metric called weak distance, and it
is guaranteed that minimizing the weak distance, such as via

mathematical optimization (MO), leads to a solution to the

underlying floating-point analysis problem, and vice versa.

Our reduction offers a key practical benefit. As modern

MO techniques work by executing an objective function, our

approach does not need to analyze floating-point program se-

mantics, an intractable and potentially cost-ineffective task.

Instead, it directs input space exploration by executing an-

other, potentially simpler floating-point program that models

the weak distance to capture the desired analysis objective.

It is a common misconception that MO is useful only for

continuous objective functions — continuity is preferred, but

not necessary. Modern, advanced algorithms exist that can

handle functions with discontinuity, high-dimensionality,

or time-consuming computation. Our approach uses MO

techniques as black-boxes and can directly benefit from the

state-of-the-art. Our main contributions follow:

• We develop a reduction theory for floating-point analysis

via mathematical optimization. To our knowledge, this

is the first rigorous investigation of the general connec-

tion between the two problem categories. In particular, we

have introduced the concept of weak distance that enables

viewing the analysis problem regarding a floating-point

program equivalently as the optimization problem of an-

other floating-point program.

• We study three instances of the theory, including bound-

ary value analysis, path reachability, and floating-point

overflow detection. These problems are known to be im-

portant, challenging, and have been treated separately in

the literature. The proposed reduction technique allows us

to approach these distinct problems uniformly in the same

theory and to effectively realize them under a common

implementation architecture.

• We conduct a set of experiments to empirically validate

our approach. Our boundary value analysis is able to trig-

ger all reachable boundary conditions of the GNU sin
function, which is complex with several hundred lines of

code. Our floating-point overflow detection has detected a

range of overflows, inconsistencies, and two latent, already

confirmed bugs in the widely-used GSL.

To facilitate the exposition of our approach and its repro-

duction, we provide a variety of examples throughout the

paper. We believe that these examples also help inform the

reader both our approach’s strengths and limitations.

The rest of the paper is organized as follows. Section 2 for-

mulates the problem, and Section 3 develops our reduction

theory. Section 4 illustrates the theory with three examples.

Section 5 lays out the implementation architecture and dis-

cuss the limitations of our approach, while Section 6 presents

our experiments and results. Section 7 surveys related work,

and finally Section 8 concludes.

Notation. As usual, we denote the set of integers and real

numbers by Z and R respectively. We write F for the set of
floating-point numbers of the IEEE-754 binary64 format.

We will often write ®x to represent an N-dimensional floating-

point vectors (x1, . . . ,xN ) in F
N
.

2 Floating-Point Analysis
The term floating-point analysis in this paper refers to a

broad class of problems in program analysis, testing, and

verification, where the goal is to determine if floating-point

program is correct or has some desired properties. In this

section, we first briefly review the semantic constructs of

the problem, formulate, and then frame it as a problem of

finding unsafe inputs. We show five instances of the defined

problem, three of which will be studied in later sections (the

other two were explored in the literature).

2.1 Problem Formulation
A large body of research on floating-point analysis can be

characterized as semantic methods. Reasoning about a pro-

gram Prog relies on its semantics, a mathematical object

JProgK that models the possible states of the program. The

correctness of the program is usually formulated as JProgK∩
Ω = ∅, where Ω refers to the set of unsafe program states.
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We formulate floating-point analysis from a program input

perspective, that is to determine whether an input exists such

that executing the program on that input can go wrong.

Definition 2.1. Let Prog be a program with an input do-

main dom(Prog) = FN , where N is the number of its inputs.

Let S be a subset of the input domain of Prog. A floating-

point analysis problem, denoted by

⟨Prog; S⟩, (1)

is the process of seeking an element of S . We say that an

algorithm solves the floating-point analysis problem if the

following two conditions hold:

(a) The algorithm must find an ®x ∈ S if S , ∅.

(b) The algorithm must report “not found” if S = ∅.

In the definition above, we have framed the analyzed pro-

gram to have only floating-point input parameters. That is

useful (although not always necessary in practice) when

we reduce the problem to optimization techniques. The set

S is usually implicitly defined as inputs triggering unsafe

states, S
def

= {®x ∈ dom(Prog) | JProgK(®x) ∩ Ω , ∅}, where

JProgK(®x) denotes the runtime states of executing Prog(®x).
Most important are conditions (a) and (b), as they define the

theoretical requirements for a solution to the problem.

2.2 Instances
Instance 1 (Boundary Value Analysis). In software testing,

inputs that explore boundary conditions are usually regarded

to have a higher payoff than test inputs that do not. The

problem of generating such inputs is called boundary value
analysis [28].

Boundary conditions refer to equality constraints derived

from arithmetic comparisons. For example, the program in

Fig. 1 has two boundary conditions, x = 1 and x = 2 corre-

sponding to the two branches.

Boundary value analysis of program Prog can be defined

as a floating-point analysis problem ⟨Prog; S⟩ where S is the

set of inputs triggering a boundary condition.

Instance 2 (Path Reachability). Given a path π of program

Prog, one needs to generate an input that triggers π . Such a

problem has been studied as an individual topic [26], or more

commonly, as a subproblem, e.g., in dynamic symbolic execu-

tion [18, 22]. Path reachability can be specified as ⟨Prog; S⟩
with S being the set of inputs triggering τ .

Instance 3 (Overflow Detection). Let Prog be the program

under test. We are interested in finding a set of inputs that

trigger overflows on most, if not all, of the floating-point

operations in Prog. Floating-point overflow detection was

suggested in the 90s as one of the major criteria for validating

critical systems [38], but it is only until recently a systematic

approach has been proposed [5].

To frame overflow detection as an instance of floating-

point analysis, we introduce a parameter L for tracking the

floating-point operations that have overflowed with previ-

ously generated inputs. Then the overflow detection problem

can be formulated as a set of floating-point analysis problems

parameterized by L, ⟨Prog; SL⟩, where

SL
def

= {®x ∈ dom(Prog) | ∃l < L, JProgK(®x) ⇓l overflow}.
(2)

Above, the notation JProgK(®x) ⇓l overflow reads as, the

floating-point operation at l overflows if Prog runs with the

input ®x .

Instance 4 (Branch Coverage-based Testing). This instance
concerns finding inputs that cover as many branches of the

tested program as possible. [17] formulates the problem by

introducing a parameter B of the branches that have already

been covered. Then, branch coverage-based testing can be

formulated as ⟨Prog; SB⟩ with SB denoting the set of inputs

that trigger a branch outside B.

Instance 5 (Quantifier-free Floating-Point Satisfiability). Con-
sider a constraint in the conjunctive normal form (CNF),

c
def

=
∧

i ∈I
∨

j ∈J ci, j , where each ci, j is a binary comparison

between two floating-point expressions. Suppose we have

the following program,

void Prog(double x1, ..., double xN ) {if (c);}

where xi , 1 ≤ i ≤ N , are the free variables of the floating-

point constraint c . Then, the problem of deciding whether

c is satisfiable or not, and the problem of solving the path

reachability problem of Prog in the sense of Def. 2.1(a-b)

(where the path consists of the true branch), are equivalent.

Remark. An instance of floating-point analysismay be viewed

as a sub-instance of another. For example, the overflow de-

tection problem (Instance 3) may be addressed as branch

coverage-based testing (Instance 4) with appropriate code

instrumentation. That is to say, if there exists an ideal im-

plementation that could achieve full branch coverage for

any given program, the same implementation could find all

possible floating-point overflows. In reality, such an ideal im-

plementation rarely exists, and we can usually expect to con-

struct more refined, dedicated solutions for sub-instances.

3 Technical Formulation
Problem reduction is a common term in computability theory.

Simply speaking, a problem A reduces to a problem B if

solving B allows for a solution to A. For example, the problem

of finding the maximum of a scalar function f reduces to

finding the minimum of −f .
In this section, we first present a reduction algorithm in a

metric space, which provides with a natural tool for bringing

floating-point analysis to bear on function minimization

techniques. Then, we generalize the reduction procedure

with the concept of weak distance, which forms the core of

our theoretical development.
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3.1 Reduction in a Metric Space
Ametric space, denoted by (M,η), is composed of a setM and

a distance function η : M ×M → R. The distance function
satisfies ∀m,n,o ∈ M , η(m,n) = 0 iff m = n, η(m,n) =
η(n,m), and η(m,n) ≤ η(m,o) + η(o,n) (triangle inequality).

Let ⟨Prog; S⟩ be a floating-point analysis problem. Since

each input is in F, we can embed the input domain dom(Prog)
in a real-valued, N-dimensional Euclidean space RN . Follow-
ing a standard practice in mathematics, one can lift η to

a “point-to-set distance” function D from a program input

x ∈ dom(Prog) to the set S ,

D(®x)
def

= min{η(®x , ®x ′) | ®x ′ ∈ S}. (3)

By definition,D(®x) is always nonnegative. It becomes smaller

when ®x gets closer to S and vanishes when ®x goes inside.

Thus, we can expect to solve the floating-point analysis prob-

lem precisely by minimizing D: (1) If the minimum found is

0, then the minimum point (where the minimum is reached)

must be an element of S ; and (2) if the minimum is strictly

positive, we can guarantee that S is empty. In other words,

we can solve the floating-point analysis problem in the sense

of Def. 2.1(a-b) with the algorithm below.

Algorithm 1. The input is a floating-point analysis problem
⟨Prog; S⟩, and the algorithm consists of the following steps.

(1) Construct the distance function D (Eq. 3).

(2) Minimize D. Let ®x∗ be the minimum point.

(3) If D(®x∗) = 0 return ®x∗. Otherwise, return “not found”.

The issue of the algorithm above, however, lies in that im-

plementing D involves η(®x , ®x ′) for all ®x ′ ∈ S . Even though S
is finite (S ⊆ dom(Prog) = FN ), it is usually defined through
the unknown part of the floating-point analysis problem. For

example, in the case of boundary value analysis (Section 2),

to implement D is to compute the distance between an arbi-

trary input and the inputs triggering a boundary value; the

later is exactly the solution set we seek (so, it is unknown).

3.2 Weak-Distance Minimization
We introduce the concept of weak distance to address the

aforementioned issue regarding Algorithm 1.

Definition 3.1 (Weak Distance). Let ⟨Prog; S⟩ be a floating-
point analysis problem. A program W is said to be a weak
distance of ⟨Prog; S⟩ if it is has the type dom(Prog) → F,
and it satisfies the following properties:

(a) For all ®x , W(®x) ≥ 0.

(b) Each zero of the weak distance is a solution to the

floating-point analysis problem, that is, W(®x) = 0 =⇒

®x ∈ S .
(c) The zeros of the weak distance include all the solutions

to the floating-point analysis problem, that is, ®x ∈

S =⇒ W(®x) = 0.

Unlike the distance function D (Eq. 3), weak distance is

defined to be a computer program. It is “weaker”, or in fact

more general, than the distance because D also satisfies the

properties in Def. 3.1(a-c). Thus, an implementable distance

function is a weak distance. Another generic weak distance

for any floating-point problem ⟨Prog; S⟩ can be the charac-

teristic function,

λ®x .

{
0 if ®x ∈ S

1 otherwise

(4)

under the condition that S is decidable (so that an algorithm

can decide ®x ∈ S).
Next we develop the theory of weak-distance minimiza-

tion. The lemma below allows for a systematic reduction

algorithm that solves the floating-point analysis problem.

Lemma 3.2. Let W be a weak distance of the floating-point
analysis problem ⟨Prog; S⟩, W∗ be the minimum of W, and
argmin W be the set of its minimum points.
(a) Deciding the emptiness of S is equivalent to checking the

sign of W∗. That is, S = ∅ ⇔ W∗ > 0.
(b) Assume that S , ∅. We have S = argmin W.

Proof. Proof of (a): Suppose S , ∅. Let ®x0 be an element

of S . We have W∗ ≥ 0 by Def. 3.1(a). In addition, we have

W∗ ≤ W(®x0) since W
∗
is the minimum. Then we have W∗ ≤ 0

because W(x0) = 0 due to Def. 3.1(c). Thus W∗ = 0. Conversely,

W∗ = 0 implies that there exists an ®x∗ ∈ S such that W(x∗) = 0.

By Def. 3.1(b), ®x∗ ∈ S . Thus S , ∅.

Proof of (b): Let 0W denote the set of the zeros of W. Below,
we show 0W ⊆ argmin W ⊆ S ⊆ 0W under the condition

S , ∅. We have 0W ⊆ argmin W, as a zero of W is necessarily
a minimum point; we have argmin W ⊆ S because S , ∅

implies W∗ = 0 by Lem. 3.2(a). For an arbitrary ®x∗ ∈ argmin W,
W(x∗) = W∗ = 0 holds. Therefore ®x∗ ∈ X by Def. 3.1(b); we

have S ⊆ 0W from Def. 3.1(c). □

Algorithm 2 (Weak-Distance Minimization). The input is
a floating-point analysis problem ⟨Prog; S⟩.

(1) Construct a program W : dom(Prog) → F that satisfies
Def. 3.1(a-c).

(2) Minimize W. Let ®x∗ be the minimum point.

(3) Return ®x∗ if W(®x∗) = 0, or otherwise, return “not found”.

The theorem below follows directly from Lem. 3.2.

Theorem 3.3 (Theoretical Guarantee). Let ⟨Prog; S⟩ be a
floating-point analysis problem. The weak-distance minimiza-
tion algorithm solves the problem in the sense of Def. 2.1(a-b).
(a) It returns an ®x∗ ∈ S if S , ∅, and
(b) It returns “not found” if S = ∅.

4 Weak-Distance Minimization Illustrated
We have applied weak-distance minimization to a number of

floating-point analysis problems that are common and impor-

tant in the industry and research. Applications to boundary
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value analysis, path reachability, and FP overflow detection

are presented in this section. (The problems have been de-

scribed in Section 2.) In each context, we demonstrate how

to construct a weak distance, and we illustrate how mini-

mizing the weak distance with an MO backend solves the

underlying floating-point analysis problem.

We first present the algorithms on boundary value analysis

and path reachability with a small, artificial example, to give

readers the intuition. Then, we use a real-world scientific

program to initiate discussions about overflow detection, of

which we also describe the algorithm with details.

Throughout this section, we need to argue whether a con-

structed program indeed meets the requirements Def. 3.1(a-c)

for being a weak distance. To simplify the presentation, we

will use real arithmetic to argue their computational values

(although a weak distance is a floating-point program), and

we defer discussions about FP inaccuracies to Section 5.

We start by reviewing notations and basic concepts in MO.

4.1 Mathematical Optimization (MO)
An MO problem [27] is to compute min{ f (x) | x ∈ X },

where f is the objective function, and X is the search space.
MO algorithms can be divided into two categories. Local

optimization focuses onwhere a local minimum can be found

near a given input, and global optimization determines the

function minimum over the entire search space.

Notation. Let f be a function over a metric space (M,η). We

call x∗ ∈ M a local minimum point if there exists a neigh-
borhood of x∗, namely {x | η(x ,x∗) < δ } for some δ > 0,

so that all x in the neighborhood satisfy f (x) ≥ f (x∗). The
value of f (x∗) is called the local minimum of the function

f . If f (x∗) ≤ f (x) for all x ∈ M , we call f (x∗) the global
minimum of the function f , and x∗ a global minimum point.
Below, we say minimum (resp. minimum point) for global

minimum (resp. global minimum point).

In this work, we see MO as an off-the-shelf black-box tech-

nique that produces a sampling sequence from a combination

of local and global optimization. The local optimization gen-

erates a sequence of samplings ®x0

®s , . . . , ®x
n
®s ,. . . that converges

to a local minimum point ®x∗
®s near a starting point ®s . Such

a local MO is then applied over a set of starting points SP .
It is expected that at least one of {®x∗

®s | ®s ∈ SP} reaches a
global minimum point, although no general guarantee can

be claimed.

4.2 Reducing Boundary Value Analysis to MO
Consider boundary value analysis for the program in Fig. 2.

The boundary values are the inputs that trigger either x = 1.0
at the first branch or y = 4.0 at the second branch. Readers

can check that -3.0, 1.0, and 2.0 are three boundary values.

To automatically detect these inputs with weak-distance

minimization, we start by instrumenting Prog with a global

variable w. The variable w is multiplied with abs(x - 1.0)

void Prog(double x) {

if (x <= 1.0) x++;

double y = x * x;

if (y <= 4.0) x--;

}

Figure 2. A simple floating-point program.

before the first branch and with abs(y - 4.0) before the

second branch. Fig. 3(a) highlights the instrumented parts

in Prog_w. Then, a driver program W captures the value of

w by invoking Prog_w. Note that the variable w is initialized

to 1 in Prog_w. By design, the following properties hold: (1)

W(x) ≥ 0 for any x ∈ F; (2) W(x) = 0 iff x = 1.0 before

the first branch or y = 4.0 before the second branch. In

other words, the nonnegative function W has encoded the

boundary values into its zeros. Fig. 3(b) shows the graph of W.
The graph attains 0 at -3.0, 1.0, and 2.0. Thus, the boundary

value analysis problem reduces to the minimization problem

of W. The program W is our constructed weak distance.

The minimization problem can then be solved by off-the-

shelf MO techniques. Fig. 3(c) shows the sampling we have

collected with the Scipy’s Basinhopping backend [37]. Ob-

serve that all three expected boundary values, depicted as

the horizontal lines in the figure, are reached by the samples.

4.3 Reducing Path Reachability to MO
In this example, we intend to trigger a path passing through

the two branches of the program in Fig. 2.

We instrument Prog with a global variable w and inject

w = w + (a <= b)? 0 : a - b

before each branch of the form a <= b. Fig. 4(a) shows the
instrumented program Prog_w. The program W initializes w
to 0 and retrieves its value after executing Prog_w(x). The
following property holds: a program input xminimizes W iff x
triggers both branches. Thus, the path reachability problem

reduces to the problem of finding the minimum of the W.
Fig. 4(b) shows the graph of the weak distance. It attains 0

for all x ∈ [−3, 1], which correspond to the set of inputs that

can trigger the path. Fig. 4(c) shows the MO sampling with W
as the objective function. The solution space is highlighted.

Observe that the highlighted region is reached by a large

number of samples, with noticeably more samples reaching

inside than outside. These results confirm the effectiveness

of using MO for this problem.

4.4 Reducing Overflow Detection to MO
The GSL Bessel function in Fig. 5 contains 23 elementary FP

operations involving +, −, ∗ or /. Suppose that the function

has been compiled into a modern IR (intermediate represen-

tation) so that each FP operation corresponds to exactly one

instruction in the IR. For example, the first statement in the
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double w;

void Prog_W (double x) {

w = w * abs(x - 1.0);

if (x <= 1.0) x++;

double y = x * x;

w = w * abs(y - 4.0);

if (y <= 4.0) x--;

}

double W (double x) {

w = 1; Prog_W(x); return w;

}

(a) (b) (c)

Figure 3. Applying weak-distance minimization to boundary value analysis. Goal: To find an input that triggers x = 1 at the first branch or

y = 4 at the second branch. (a) Weak distance. (b) Graph of the weak distance W(x). (c) MO samples. In (c), the x-axis is the index of the

samples n, and the y-axis is the value of the sampled input xn . Horizontal lines are three known boundary values -3.0, 1.0, and 2.0.

double w;

void Prog_w(double x)) {

w = w + (x <= 1.0 ? 0 : x - 1);

if (x <= 1.0) x++;

double y = x * x;

w = w + (y <= 4.0 ? 0 : y - 4);

if (y <= 4.0) x--;

}

double W(double x) {

w = 0; Prog_w(x); return w;

}

(a) (b) (c)

Figure 4. Applying weak-distance minimization to path reachability. Goal: To find an input triggering both branches (a) Weak distance; (b)

Graph of the weak distance W(x); (c) MO samples. In (c), the x-axis is the index of the samples n, and the y-axis is the value of the sampled

input xn . A known solution space is [−3, 1].

int gsl_sf_bessel_Knu_scaled_asympx_e(const double nu,

const double x, gsl_sf_result* result) {

double mu = 4.0 * nu * nu;

double mum1 = mu - 1.0;

double mum9 = mu - 9.0;

double pre = sqrt(M_PI / (2.0 * x));

double r = nu / x;

result->val = pre * (1.0 + mum1 / (8.0 * x) +

mum1 * mum9 / (128.0 * x * x));

result->err = 2.0 * GSL_DBL_EPSILON *

fabs(result->val) + pre * fabs(0.1 * r * r * r);

return GSL_SUCCESS;

}

Figure 5. A Bessel function from GSL bessel.c

source, mu = 4.0 * nu * nu, compiles to two LLVM IR

instructions of the form

l1: t = double fmul 4.0 nu
l2: mu1 = double fmul t nu

Below, we will use the term “instruction” to refer to the

IR code and “statement” to the source code. Thus, the Bessel

function has a set of 23 instructions. We write L̄ to denote

this set. Each instruction l ∈ L̄ is of the form “a = ...”. We

call a the assignee of l .
Our ultimate goal in this application is to detect all the

instructions in the Bessel function that can overflow, and

for each of the operations, a program input triggering the

overflow. Following the explanation in Section 2, it suffices

that we consider the parameterized floating-point analysis

problem ⟨Prog; SL⟩, where L ⊆ L̄ tracks FP instructions that

have already overflowed with previously generated inputs.

As before, we start by constructing a weak distance. We

first illustrate this weak distance in a simple case, that is

when L = L̄ \ {l1, l2}. In other words, we intent to trigger
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overflow on all the instructions given that all except two, l1
and l2, have already overflowed. We inject

if (l_i is not in L) w = |ai| < MAX ? MAX - |ai| : 0

after li , where ai refers to the assignee of the assignment at

statement li (t and mu1 for i = 1, 2 respectively).

By design, w ≥ 0; and w = 0 iff an overflow at l2 occurs
(the injected code after l2 overwrites w’s previous value).

2

Thus, if we have a weak distance function that maps inputs

of the Bessel function to the value of w after executing the
instrumented program, minimizing the weak distance should

allow us to find an input that triggers an overflow on l2.
Then, L is to be updated to L ∪ {l2}, making the injected

code after l2 behave like a no-op. If we continue minimizing

the weak distance, we can trigger overflows on l1 as well.

When overflow has been triggered for both instructions, all

the inserted code acts like a no-op, and the weak distance

returns the initial value of w, implying that no more overflow

can be found.

The algorithm below applies in the general case. The al-

gorithm follows what we have described above except for

some implementation details that we will explain shortly.

Algorithm 3 (Overflow Detection with Weak-Distance Re-

duction). Let Prog be the program under analysis containing

nFPProg floating-point instructions. We use the set L to track

the set of instructions in Prog that have overflowed with pre-

viously generated inputs, andwe use the setX to track the set

of the generated inputs. The MO backend is Basinhopping.
It takes a floating-point program and a starting point as

inputs and returns a minimum point.

(1) Instrument Prog with a global variable w of type double.
(2) Inject the following code after each floating-point oper-

ation l in Prog, where the assignee of l is denoted by a.
Let Prog_w denote the instrumented program.

if (l is not in L) {

w = (|a| < MAX)? MAX - |a|: 0;

if (w == 0) return;

}

(3) Let W be the following program

double W(double x1, ..., double xN ) {

w = 1; Prog_w(x1, ..., xN ); return w;

}

(4) Pick a random starting point ®s ∈ FN .
(5) Let ®x∗ = Basinhopping(W, ®s)
(6) If W(®x∗) = 0, then set X = X ∪ {®x∗}.
(7) Pick target to be the last instruction executed in the pre-

vious round of the Basinhopping cycle in step (5), and let

L = L ∪ {target}.
(8) If |L| ≤ nFPProg, go to step (4).

(9) Return X .

2
More precisely, w = 0 implies mu ≥ MAX, not mu > MAX. But we dismiss

the situation of |mu| attaining MAX exactly, which is extremely unlikely to

happen in the floats.

Algorithm 3(1-3) constructs the weak distance. This part

from the injected code if (w==0) return; is to ensure that
the instrumented program terminates whenever it reaches 0.

The rest of the algorithm from (4) is to minimize the weak

distance in multiple iterations. Each iteration launches the

optimization backend from a random starting point. From

each starting point the backend Basinhopping computes the

minimum point ®x∗. If the minimum is 0, ®x∗ is to be added to

X . The Basinhopping procedure is a Markov Chain Monte

Carlo (MCMC) sampling over the space of the local minimum

points [23]. Its algorithmic detail can be found in Section 4

of [17] but is irrelevant for this presentation as we use the

backend as a black-box.

The use of target in step (7) of the algorithm is heuristic.

The idea is that the algorithm targets one instruction in each

minimization round. Following the instrumentation in step

(2), the assignment of the variable w of the last instruction
that has not yet been triggered with overflow overwrites

the precedent assignments of w. Thus, we populate L with

target to ensure termination of the algorithm. If a minimum

0 is found, target is to be put in L, meaning that overflow on

the targeted instruction has been tracked by L. If a nonzero
minimum is found, then either the instruction target over-
flows (such as the case y = x * 0), or the optimization

backend fails to find the true minimum 0. In either case,

target is added to L so that L not only includes overflowed

instructions, but also those that cannot be triggered with

overflow or do not overflow. In this way, we can guarantee

termination: minimizations rounds.

Experimental results on the Bessel function will be pre-

sented in Section 6. Briefly, we have found 21 overflows out

of 23 FP operations. In particular, the one that triggers the

overflow on l1 is nu = 1.8e308; the one that triggers overflow

on l2 is nu = 3.2e157.

Remark. It is worth nothing that the weak distance con-

structed in this section depends on a global variable L. This
is where optimization of weak distance differs fromMO used

in the literature, where the objective function is usually pure,

with no side effects. Def. 3.1 only specifies the minimum set

of rules for constructing a weak distance, which allows for

significant flexibility when it comes to implementing such

a weak distance as is shown in this application. Another

difference between traditional MO and MO of weak distance

lies in their termination conditions. Traditional MO usually

does not know when the optimization process should termi-

nate, whereas in the case of weak distance, if a minimum 0

is reached, MO should stop as no smaller minimum can be

found due to Def. 3.1(1).

5 Implementation Architecture
This section contributes to a system for implementing weak-

distance minimization involving three layers as illustrated

in Figure 6. Each layer, the Client, Analysis Designer, or
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Figure 6. Implementation architecture for weak-distance minimiza-

tion.

Reduction Kernel, is responsible for a different facet of the

implementation so that developers with varying areas of

expertise can evolve different portions of the system sepa-

rately. Limitations that could affect applicability will also be

discussed in each layer.

5.1 The Client Layer
The Client defines the floating-point analysis problem by

providing the program under analysis Prog and specifying

a set of program inputs S ⊆ dom(Prog). If Prog invokes

other functions, the Client also needs to provide the invoked

functions as well. For example, consider the boundary value

analysis problem for the following (artificial) program

void Prog(double x){if (g(x) <= h(x)){...}}

If the analysis is also concerned with boundary values within

g and h, the Client must provide instrument-able versions of

g and h.
Following Definition 2.1, the Client is expected to pro-

vide a valid specification, in the sense that dom(Prog) = FN

for some N ∈ Z and S ⊆ dom(Prog). If dom(Prog) , FN ,
the Client needs to specify a valid floating-point analysis

problem ⟨Progv ; Sv ⟩ such that dom(Progv ) = F
N
, and that

a solution found in Sv can be mapped to an element in S . For
example, if the objective is to find boundary values of a func-

tion with interface Prog(int) instead of Prog(double), the
Client can specify the boundary value analysis problem with

the function Prog_v(double x) {Prog(d2i(x);} where

d2i converts a double to an int, through a kind of trunca-

tion for example. In this way, every boundary value x∗ found
should be mapped to d2i(x∗) as a solution to the original

problem. As another example, if the objective is to analyze

a function of the interface Prog(double*), the actual ana-
lyzed program can be Prog_v (double x){double* p; *p
= x; Prog(p);}. As a third example, the Bessel function in

Figure 5 accepts two double values and a pointer value. The
latter is for passing the computation results. The function

inputs can be easily adapted to F2
if a global variable is used

to hold the results.

Such tricks, however, have to be done manually, and not

all floating-point programs may fit the requirement that

dom(Prog) = FN . That is where we would like to point out

a limitation of our approach.

Limitation 1. If the program under analysis has an input

parameter other than double, it is possible that the Client’s
problem does not fit Definition 2.1, or manual efforts may

be needed from the Client side to reduce the case to a valid

floating-point analysis problem.

5.2 The Analysis Designer Layer
The Analysis Designer aims to construct a weak distance

for ⟨Prog; S⟩. The process usually depends on two param-

eters. One is w_init, the initial value of the instrumented

variable w. The other is a piece of code update_w that is to
be instrumented into the program under analysis and up-

dates w. The choices of w_init and update_w depend on

the category of floating-point analysis problems, following

Definition 3.1(a-c) as guidelines.

In theory, the constructed weak distance should satisfy

conditions (a-c) of Definition 2.1. In practice, however, it

occurs that the Analysis Designer builds a function that

satisfies the conditions in real arithmetic but not in floating-

point arithmetic. Consider the path reachability problem

with the following program:

void Prog(double x){if (x == 0) ...; return;}

The expected input is 0. But if we inject w = w + x * x
before the branch and retrieve the value of w through a W
program as before, then W(x) = 0 does not necessarily imply

x = 0, e.g., W(1e-200) = 0 as well, but 1e-200 does not trigger

the path if (x == 0). This example shows a limitation that

the Analysis Designer faces.

Limitation 2. Constructing a weak distance that strictly

complies with Definition 2.1 can be tricky due to floating-

point inaccuracy. The Analysis Designer may reason about

floating-point programs with real arithmetic. Formally, if

Algorithm 2(1) fails to produce a weak distance for a given

floating-point analysis problem ⟨Prog; S⟩, then the algorithm
returns an ®x∗ but ®x∗ < S , causing unsoundness.

Remark. One way to avoid unsoundness is check whether

®x∗ ∈ S in Algorithm 2(3), assuming that S is decidable. For

example, in the path reachability case above, one can run

the program to see if the input 1e-200 indeed passes through

the branch if (x == 0).
Note that while inaccuracy is inherent in floating-point

code, some can be avoided in constructing weak distance.

For example, the use of the absolute value instead of the

square operator, as shown in the example above and in Fig-

ure 3, helps avoid overflow/underflow, which allows us to

mitigate Limitation 2. Also, one can implement Wwith higher-
precision arithmetic, or the integer-valued ULP distance [31].
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double r;

void Prog_w(double x){

w = w * (x == 1)? 0: 1;

l0: if (x <= 1) x++;

double y = x * x;

w = w * (y == 4)? 0: 1;

if (y <= 4) x--;

}

Figure 7. Boundary value analysis with a characteristic function

as the weak distance.

5.3 The Reduction Kernel Layer
This layer takes as inputs the program Prog provided by

the Client, the initial value w_init and the stub update_w
set by the Analysis Designer, and operates the following

three steps: (1) Inject w and update_w into Prog to construct
Prog_w, (2) initialize w to w_init, invoke Prog_w and return

w in W, and (3) Minimize W with mathematical optimization.

Steps (1-2) are simple program instrumentation, which

can be achieved with the Clang/LLVM infrastructure for the

C family of languages. Step (3) introduces an external MO

backend. In theory, if the minimum is zero, the minimum

point can be returned as a solution expected by the Client;

if the minimum is strictly positive, then S = ∅. In practice,

however, it is possible that the MO backend produces a sub-

optimal result. In that case, if the exact minimum is strictly

larger than zero, Algo. 2 concludes that S = ∅, which is cor-

rect. But if the exact minimum is 0, the reduction algorithm

also concludes S = ∅, which is incorrect, a situation that we

call incompleteness.
As an illustration, consider the boundary value analysis

problem (Figure 3) again. Suppose we implement a charac-

teristic function as shown in Figure 7 (a), which is a weak

distance as explained in Section 3. However, existing opti-

mization tools should have difficulty to find any of -3.0, 1.0 or

2.0 as the function is flat almost everywhere (Figure 7 (b)). In

this case, weak distance does not help guide the search pro-

cess, and the optimization of this weak distance degenerates

into pure random testing.

Limitation 3. MOproblems are intractable in general. There

is no guarantee that the optimization backend produces an

actual minimum. As a result, incompleteness may occur: the

reduction algorithm may return “not found” whereas S , ∅.

6 Experiments
We have presented weak-distance minimization from both a

theoretical and an applicative perspective. Our experiment

attempts to assess the gap between them, namely, how much

we can answer a floating-point analysis problem if its re-

duced MO problem can only be partially solved in general?

Table 1. Different MO backends applied on two weak distances.

Boundary Value Analysis Path R.

W∗ x ∗ W∗ x ∗

Basinhopping 0 1.0, 2.0, -3.0 0 [−3, 1]

0.999 999 999 999 999 9

Differential E. 4.43e-18 NA 0 [−3, 1]

Powell 0 1.0, 2.0 0 [−3, 1]

We have designed three sets of experiments that aim to an-

swer this question. All the experiments were performed on

a laptop with a 2.6 GHz Intel Core i7 running Ubuntu 14.04

with 4G RAM.

6.1 Checking Different MO Backends
Our first experiment is a sanity check. Since MO is seen as a

black-box technique in our approach, we should be able to

apply different MO backends and observe differences regard-

ing completeness (Section 5). To this end, we have used three

MO backends on the example program in Fig. 2. The first

backend is Basinhopping [23], an MCMC (Markov Chain

Monte Carlo) algorithm that samples over local minimum

points. The second is Differential Evolution [35], an evolu-

tionary programming algorithm utilizing a parallel direct

search evolution strategy. The last one is Powell [30], a local

search that does not need to calculate function derivatives.

All three are taken from the SciPy package [3]. We applied

the backends on two weak distances used in our bound-

ary value analysis (Fig. 3) and path reachability examples

(Fig. 4). For each weak distance W, we recorded all the mini-

mal found W∗ and their corresponding minimum points x∗.
Tab. 1 presents our experimental data.

For boundary value analysis: Basinhopping detected three

expected boundary values, -3.0, 1.0, 2.0, and one that we were

unaware of, 0.999 999 999 999 999 9. It is the same number we

have discussed in Section 1. We can quickly check that this

number indeed triggers the boundary condition y = 4.0 at

the second branch of the program. Differential Evolution, on

the other hand, did not find any boundary value. It achieved

the minimum W∗ = 1e-18 and concluded “not found.”
3
At last,

Powell found two boundary values, 1.0 and 2.0, but missed

-3.0. For path reachability, the expected solution space is

[−3, 1]. Each tested backend reached the minimum 0, and

they all found a large number of x∗ between - 3.0 and 1.0.

Thus, the results show that using different MO backends is

possible, although their results may vary.

6.2 Boundary Value Analysis on GNU sin

Our second experiment is a case study with the sin func-

tion implemented in the GNU C Library (Glibc) 2.19 [2].

3
This could be due to our misuse of the implementation or its configuration,

e.g., by setting an overly large tolerance.
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1 double sin (double x) {

2 int k, m;

3 ...

4 k = 0x7fffffff & m;

5 if (k < 0x3e500000) // |x| < 1.490120E-08 { ... }

6 else if (k < 0x3feb6000) // |x| < 8.554690E-01 { ... }

7 else if (k < 0x400368fd) // |x| <2.426260E+00 { ... }

8 else if (k < 0x419921fb) // |x| < 1.054140E+08 { ... }

9 else if (k < 0x7ff00000) // |x| < 2
1024 { ... }

10 else ...

11 }

Figure 8. An implementation of the sin function from Glibc 2.19.

4
To compute the correctly rounded values for all inputs,

the implementation uses Chebyshev, Taylor polynomials,

or lookup tables to approximate sin(x) for different input
ranges [4]. Details of the implementation are not necessary

for the discussion that follows and are omitted here.

Fig. 8 displays a simplified version of the sin function,

which has five branches from Lines 5 to 9 corresponding

to the aforementioned input ranges. Each of the branches

involves the absolute value function, for which we count two

boundary conditions, e.g., x = 2
−26

and x = −2
−26

for Line 5.

In total, this sin function contains 10 boundary conditions.

Among them, the two associated with the last branch, x =
2

1024
and x = −2

1024
, are unreachable as 2

1024
is strictly larger

than the largest double floating-point number (except +inf).
In this experiment, we test the capability of weak-distance

minimization in triggering these boundary conditions.

To carry out the experiment, we first instrumented a weak

distance for the sin function manually. We introduced a

global variable w in sin, injected w = w * abs(k - c)
before each branch of the form if (k < c), and retrieved

the value of w through the program W, namely weak distance,

as illustrated in Fig. 3 . We used Basinhopping to minimize

W from a set of random starting points. The MO process

produced a total of 6 365 201 samples for triggering all the

reachable boundary conditions, which took 66.3 seconds.

Fig. 9 illustrates the sampling process in terms of the numbers

of triggered boundary conditions.

To analyze the experimental data, we collected all the

samples in a python variable Raw. From Raw, we filtered the

samples that attained the minimum 0 on the weak distance,

namely, BV
def

= {x ∈ Raw | W(x) = 0}. The samples in BV are

the boundary values that our analysis reported. There were

945 314 samples in BV, that is 14.9% of the sample size of Raw.
We analyzed the data from two aspects:

(i) Soundness, namely, whether these reported boundary

values, i.e., the samples in BV, trigger boundary conditions

4
Glibc’s implementations of sin are system-dependent. The implementa-

tion that we use is for x86-64 Linux. It can be found in the routine _sin
(double x) of sysdeps/ieee754/dbl-64/s_sin.c.

Figure 9. Boundary value analysis on GNU sin: The number of

the triggered boundary conditions (y-axis) in terms of the sampling

(x-axis).

Table 2. Case study with Glibc sin: Boundary value analysis.

Br. Line 5 Br. Line 6 Br. Line 7 Br. Line 8

k<0x3e500000 k<0x3feb6000 K<0x400368fd k<0x419921fb

+
ref 1.490 120e-8 8.554 690e-1 2.426 260 1.054 140e8

min 1.490 117e-8 8.554 688e-1 2.426 264 1.054 143e8

max 1.490 117e-8 8.554 692e-1 2.426 266 1.054 144e8

hits 1 374485 44342 55

-
ref -1.490 120e-8 -8.554 690e-1 -2.426 260 -1.054 140e8

min -1.490 118e-8 -8.554 692e-1 -2.426 266 -1.054 144e8

max -1.490 116e-8 -8.554 688e-1 -2.426 264 -1.054 143e8

hits 89563 422036 14777 55

as expected. For this purpose, we manually instrumented

the sin function with if (k == c) hits++ before each

branch if (k < c). We then ran this instrumented program

with all the samples in BV. We observed that hits, initialized
0, became 945 314 in the end, which is exactly the sample

size of BV. This confirms that each reported boundary value

triggers exactly one boundary condition.
5

(ii) Completeness, in the sense that all reachable boundary

conditions should have been triggered. Fig. 9 explained above

already showed the completeness. Here, we grouped the

samples of BV by its triggered boundary conditions. Tab. 2

shows the boundary values suggested by the developers (row

ref), the minimum and maximum of our found boundary

values (rows min and max), and the number of times the

boundary condition has been reached (row hits). The results
confirm that each of the 8 reachable boundary conditions

is reached. It also shows that our reported boundary values

are very close to those suggested by developers.

5
Readers may be surprised to see that such a large number of boundary

values can be associated with only 8 boundary conditions. Consider, for

example, a program Prog(double x){if (1 + x == 1) ...;}. Clearly,
0 is a boundary value, but so are 1e-17 and many other small floating-point

numbers, as 1 + x = 1 in floating-point arithmetic if x is close to 0.
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Table 3. Result summary: Floating-point overflow detection.

Benchmark no. issues

File Function names |Op| |O| |I| |B| T (sec)

bessel bessel_Knu_scaled. 23 21 4 0 6.0

hyperg gsl_sf_hyperg_2F0_e 8 4 2 0 5.9

airy gsl_sf_airy_Ai_e 26 2 2 2 10.4

The column |Op| refers to the number of floating-point operations. |O|, |I|, |B|

refer to the numbers of detected overflow, inconsistencies, and bugs, respec-

tively.

6.3 Finding Bugs in GSL
Our third experiment applies weak-distance minimization

to detecting floating-point overflows. In science and applied

mathematics, there is an extensive use of the GNU Scientific

Library (GSL), which has been ported to many program-

ming languages, such as Java, Python, Ocaml and Octave.

Thus, GSL provides a practical context for this experiment.

We choose three special functions6 from the GNU Scientific

Library (GSL) as benchmarks: the Airy, Bessel, and Hyper-

geometric functions. Our criteria for selecting these bench-

marks are as follows: they need to be be sufficiently sophis-

ticated to challenge existing solvers, and yet not overly com-

plicated to prevent us from analyzing the detected issues

manually (using tools like gdb).
We implemented Algo. 3 in a prototype called fpod and

evaluated its ability to detect floating-point overflow. The

front-end constructs the weak distance with an LLVM pass,

which works on code from the C family such as GSL; the

backend uses Basinhopping as before. We carried out the

experiment in the following steps. First we used fpod to gen-

erate inputs triggering overflows in the benchmarks. Then

we replayed with the inputs for an inconsistency check. The

inconsistency refers to a situation when a GLS computation

manifests exceptional conditions but its returned status
shows GSL_SUCCESS. Finally, we manually analyzed the root

cause of each inconsistency with gdb to see if the inconsis-

tency is a serious issue. We reported two such issues to GSL

developers, both of which have been confirmed. Tab. 3 gives

a quantitative summary of our findings.

6.3.1 Floating-point Overflows
An overflow is detected whenever the backend of fpod re-

turns 0 as the minimum. We recorded each overflow as a

pair (op,x∗), where op is the floating-point operator, and x∗

the input data triggering the overflow. If a strictly positive

minimum is produced, we relaunch Basihoppingwith other

starting points in case that failing to find a minimum 0 is

due to incompleteness (Section 5).

6
Special functions are functions with established names and notations due to

their importance in mathematical analysis, physics and other applications.

Table 4. Floating-point overflow detected in Bessel.

Floating-point operations that have overflowed nu∗, x∗

double mu = 4.0 * nu*nu 1.8e308, -1.5e2

double mu = 4.0*nu * nu 3.9e157, 2.5e2

double mum1 = mu - 1.0 2.8e157, 3.3e2

double mum9 = mu - 9.0 3.4e157, -4.2e1

double pre = sqrt(M_PI/(2.0 * x)) 4.5e1, 1.3e308

double pre = sqrt(M_PI / (2.0*x)) missed

double r = nu / x 1.4e308, -7.6e-1

val=pre*(1.0 + mum1/(8.0 * x) + mum1*mum9/(128.0*x*x)) 2.8e2, 8.6e307

val=pre*(1.0 + mum1 / (8.0*x) + mum1*mum9/(128.0*x*x)) 3.2e157, 5.3e1

val=pre*(1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x)) 4.3e157, 4.1e1

val=pre*(1.0 + mum1/(8.0*x) + mum1 * mum9/(128.0*x*x)) 8.4e77, -2.5e2

val=pre*(1.0 + mum1/(8.0*x) + mum1*mum9/(128.0 * x*x)) 2.2e1, 3.6e307

val=pre*(1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x * x)) 3.4e2, 2.4e307

val=pre*(1.0 + mum1/(8.0*x) + mum1*mum9 / (128.0*x*x)) 9.4e77, -1.9e2

val=pre*(1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x)) 9.9e77, 9.5e1

val=pre * (1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x)) 1.1e78, 2.3e2

err=2.0 * EPSILON*fabs(val) + pre*fabs(0.1*r*r*r) missed

err=2.0*EPSILON * fabs(val) + pre*fabs(0.1*r*r*r) 1.2e78, 3.1e2

err=2.0*EPSILON*fabs(val) + pre * fabs(0.1*r*r*r) 1.5e308, -6.0e-1

err=2.0*EPSILON*fabs(val) + pre*fabs(0.1 * r*r*r) 5.2e159, -1.9e2

err=2.0*EPSILON*fabs(val) + pre*fabs(0.1*r * r*r) 4.6e104, -8.7

err=2.0*EPSILON*fabs(val) + pre*fabs(0.1*r*r * r) 2.8e104, 1.7e1

err=2.0*EPSILON*fabs(val) + pre*fabs(0.1*r*r*r) 1.0e78, 1.7e2

In the first column, “val” is short for result->val, “err” is short for result->err,

and “EPSILON” is short for GSL_DBL_EPSILON.

Our tool fpod found overflows in each of the three bench-

marks. In particular, we find that floating-point overflows

present in almost every floating-point operation of the bessel
benchmark. Tab. 4 shows the floating-point instructions that

overflow and their corresponding input data. The only two

misses occur for the “*” operator in double pre = sqrt
(M_PI/(2.0*x)) and the first “*” of result-> err = 2.0 *
GSL_DBL_EPSILON. The latter miss is expected, as it involves

multiplication of two constants.

A natural question that would arise is how many of these

overflows are real issues. The analysis below attempts to

answer this question.

6.3.2 Inconsistencies and Bugs
The selected GSL special functions follow the POSIX error-

handling convention, in which an error code is to be returned
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Table 5. Inconsistency detected in three GSL special functions and their root cause.

®x ∗
Problematic locations status val err Root causes

bessel
1.8e308, -1.5e2 double mu = 4.0 * nu*nu 0 -nan -nan Large input nu

3.2e157, 5.3e1 double mu = 4.0*nu * nu 0 inf inf Large input nu

8.4e77 -2.5e2 double pre = sqrt (M_PI/(2.0*x)) 0 -nan -nan negative in sqrt

9.9e77, 9.5e1 result->val = pre * (... + mum1 * mum9/(128.0*x*x)) 0 inf inf Large input nu

hyperg
-1.4e2, -1.2e2, -1.0e2 result->val = pre * U.val 0 inf inf Large operands of *

-6.2e2, -3.7e2, -1.5e2 double pre = pow (-1.0/x, a) 0 inf inf Large exponent of pow

airy
-1.842 761 152 int stat_mp = airy_mod_phase(..., & theta ) 0 0.3 inf division by zero

-1.142e34 int stat_cos = gsl_sf_cos_err_e(..., & cos_result ) 0 -inf inf Inaccurate cosine

indicating whether the computation succeeds. These func-

tions are typically invoked as follows:

gsl_sf_result result;

int status = gsl_sf_bessel_e(x, &result);

if (status == GSL_SUCCESS){ //use result }

Above, gsl_sf_result is defined as

typedef struct { double val; double err;}

where val stores the computational result and err is for

an error estimate. The returned status, according to the

documentation, “indicates error conditions such as over-

flow, underflow or loss of precision. If there are no errors,

the error-handling functions return GSL_SUCCESS.” Thus, we
refer to “inconsistency” a situation where status equals

GSL_SUCCESS (which is macro for 0 under our environmen-

tal setting) and result.val or result.err equals to inf,
-inf, nan or -nan. Tab. 5 summarizes our analysis results

on a total of 8 inconsistencies. Calculating with the inputs

®x∗ from the second column of the table, a developer should

not see any erroneous status. If the developer starts to use

result, however, the unexpected results due to the overflow
will be discovered.

We investigated the root cause for these inconsistencies by

analyzing their execution traces with the inputs ®x∗. Five out
of the eight inconsistencies are due to large function inputs

or operands. For example, when nu = 1.8e308, the first “*”

in double mu = 4.0 * nu * nu overflows. Another one is

due to negative operand of sqrt in bessel. We believe that

these issues are benign. So we focus on the two remaining

inconsistencies. Both of them are from the airy function.

One inconsistency is due to a division by zero, and another

one is due to inaccurate cos used in GSL. We reported the

two to GSL developers who later confirmed that both of our

findings were indeed bugs.

Bug 1 The Airy function triggers a division-by-zero with

the input x1 = −1.842761151977744. The division-by-zero

exception disappears if one slightly disturbs the input, say,

to −1.84276115198. In the airy_mod_phase function that

gsl_sf_airy_Ai_e invokes, the variable result_m is di-

vided whereas it has vanished following a nontrivial com-

putation (with a loop in function cheb_eval_mode_e, Lines
26-30).

Bug 2 The Airy function gives wrong results with the in-

put x2 = -1.14e34. GSL’s calculation result is -inf. It is
mathematically wrong because Airy functions are damped

oscillatory for negative inputs. Using Mathematica, the same

airy function returns -1.36e-9. Using gdb, we observe that
gsl_sf_airy_Ai_e (-1.1e34) invokes gsl_sf_cos_err_e
(theta.val, theta.err, &cos_result)with theta.val
= -8.11e50 and theta.err = 7.50e35. After this invocation,

cos_result.val becomes -inf, clearly beyond its expected
[-1,1] bound.

Remark. Among the five instances introduced in Section 2:

The branch-coverage based testing implementation CoverMe

is experimentally compared with the fuzzing tool AFL, and

bAUSTIN (an FP testing implementation relying on search-

based strategies and symbolic execution)) [17]; the satisfia-

bility solving tool XSat is compared with MathSat, Z3, and

the Coral solver [16]; to our knowledge, no boundary value

analysis or path reachability tools for FP code have been pro-

posed; as for FP overflow detection, an indirect comparison

can be made between our implementation of Algorithm 3

fpod and Ariadne [5]. The latter also analyzed the Airy func-
tion, but it did not find bugs in it, whereas we have found two;

Ariadne reported a single overflow for the Bessel function,

whereas we have found 21.

7 Related Work
Constructing an axiomatic system [15, 19] is of central im-

portance for ensuring program correctness. In the context of

floating-point (FP) analysis, a major milestone toward the ax-

iomatic construction is the IEEE-754 standardization [1] and

its formalization [8]. The standard grew out of a period of

time where floating-point performance, reliability, and porta-

bility were of the utmost importance, which, combined with
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the inherent limitations of machine representation, arguably

contributes to the semantic complexity of today’s floating-

point arithmetic [20, 32]. This complexity now challenges

how to prove the correctness of floating-point programs, or

JProgK ∩ Ω = ∅, in which Ω specifies the erroneous states.

Two kinds of approximation have been extensively stud-

ied in FP analysis. One is abstract interpretation [11], which

systematically constructs an abstract semantics JProgK♯ ⊇

JProgK and proves JProgK♯ ∩ Ω = ∅. Such kinds of approx-

imation allows for detection of a large class of numerical

bugs[5, 13], or for proving their absence [6, 24], and has be-

come the basis of more sophisticated analyses [7, 9, 31], and

program transformations [12, 24].

Another kind of approximations is to show that JProgK♭ ∩
Ω , ∅, where JProgK♭ refers to an under-approximation

of JProgK that is usually computed from generating a con-

crete program input or trace via random testing or SMT

solving [18]. Many analyses in this category adopt sym-
bolic execution [21]. They repeatedly select a target path and

gather the conjunction of logic conditions along the path,

called path condition. They then use SMT solvers to calculate

a model of of the path constraint. Symbolic execution and its

variants have seen much progress since the breakthrough in

SAT/SMT [29, 33], but they still have difficulties in handling

scientific code that is heavy on numerical computation.

The idea of using Mathematical Optimization (MO) [27]

for FP analysis has been explored. In the seminal work of

Miller et al. [26], optimization methods have been used in

generating test data, which have been taken up in the 1990s

by Koral et al. [14, 22]. These methods have found their ways

intomanymature implementations [34, 36], and in particular,

search-based testing [25]. The latter uses fitness functions to

encode path conditions and maximizes/minimizes the func-

tions to search for test inputs. The fitness function is similar

to weak distance in the sense that both encode program prop-

erties into numerical functions. However, minimizing the

fitness function assists in the problem solving but does not

offer the stand-alone algorithm [25], whereas minimizing the

weak distance is guaranteed to solve the original problem.

Such theoretical guarantees and their usage have been

shown in two instances of this work, XSat [16] and Cov-

erMe [17]. XSat transforms an FP constraint π into a nonneg-

ative FP program Rπ that attains 0 if and only if the program

input of Rπ is a model of π . The problem of deciding Rπ is

then solved equivalently as minimizing Rπ . The equivalence
can be seen as a result of Theorem 3.3. In the context of

branch-coverage based testing, CoverMe introduces a pro-

gram FOO_R such that any input found by minimizing FOO_R
triggers a branch that has not yet been covered in the tested

program. This guarantee is proved rigorously in [17] but can

now be obtained “for free” from Theorem 3.3.

This work shows that generalizing FOO_R or R to the con-

cept of weak-distance allows us to connect the two problem

domains, namely, MO and FP analysis. This generalization

qualifies MO reductions for other FP analyses and helps de-

sign alternative weak distances. It also implies that advances

in addressing the limitations in an instance of weak-distance

minimization can also benefit other instances. As an exam-

ple, XSat [16] employs ULP, an integer-based FP metric, to

mitigate unsoundness caused by inaccuracy of FP opera-

tions (Limitation 2). Thus, the weak-distance minimization

framework allows one to consider using ULP to mitigate

unsoundness in all the other instances listed in Section 2.

8 Conclusion
The theory and applications of weak-distance minimization

have been grounded on the concepts of weak distance and

mathematical optimization. Theorem 3.3 stipulates that the

problem of analyzing a program Prog reduces to an equiva-

lent problem of minimizing an associated weak distance W.
What this reduction theory provides is an efficient and gen-

eral approach applicable to a variety of real-world floating-

point analysis problems. Two instances of this approach,

branch coverage-based testing and quantifier-free FP satis-

fiability solving, have been implemented in the literature.

Three other instances, boundary value analysis, path reach-

ability and overflow detection, have been developed and

investigated in this work. Our experiments and case studies

have provided compelling evidence and promising results

in supporting the theoretical claims, and suggests that our

approach is effective in analyzing and detecting issues in

scientific code. Further investigations can seek to overcome

or mitigate the discussed limitations.
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