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Abstract
Achieving high code coverage is essential in testing, which
gives us confidence in code quality. Testing floating-point
code usually requires painstaking efforts in handling floating-
point constraints, e.g., in symbolic execution. This paper turns
the challenge of testing floating-point code into the oppor-
tunity of applying unconstrained programming — the math-
ematical solution for calculating function minimum points
over the entire search space. Our core insight is to derive a
representing function from the floating-point program, any of
whose minimum points is a test input guaranteed to exercise
a new branch of the tested program. This guarantee allows
us to achieve high coverage of the floating-point program by
repeatedly minimizing the representing function.

We have realized this approach in a tool called CoverMe
and conducted an extensive evaluation of it on Sun’s C math
library. Our evaluation results show that CoverMe achieves,
on average, 90.8% branch coverage in 6.9 seconds, drastically
outperforming our compared tools: (1) Random testing, (2)
AFL, a highly optimized, robust fuzzer released by Google,
and (3) Austin, a state-of-the-art coverage-based testing tool
designed to support floating-point code.

CCS Concepts • Software and its engineering ! Dy-
namic analysis

Keywords Unconstrained Programming, Representing Func-
tion, CoverMe

1. Introduction
Test coverage criteria attempt to quantify the quality of test
data. Coverage-based testing [33] has become the state-of-
the-practice in the software industry. The higher expectation
for software quality and the shrinking development cycle

have driven the research community to develop a spectrum
of automated testing techniques for achieving high code
coverage.

A significant challenge in coverage-based testing lies in
the testing of numerical code, e.g., programs with floating-
point arithmetic, non-linear variable relations, or external
function calls, such as logarithmic and trigonometric func-
tions. Existing solutions include random testing [14, 23],
symbolic execution [17, 24], and various search-based strate-
gies [12, 25, 28, 31], which have found their way into many
mature implementations [16, 39]. Random testing is easy to
employ and fast, but ineffective in finding deep semantic is-
sues and handling large input spaces; symbolic execution and
its variants can perform systematic path exploration, but suf-
fer from path explosion and are weak in dealing with complex
program logic involving numerical constraints.

Our Work This paper considers the problem of coverage-
based testing for floating-point code and focuses on the cov-
erage of program branches. We turn the challenge of testing
floating-point programs into the opportunity of applying un-
constrained programming — the mathematical solution for
calculating function minima over the entire search space [44].

Our approach has two unique features. First, it introduces
the concept of representing function, which reduces the
branch coverage based testing problem to the unconstrained
programming problem. Second, the representing function
is specially designed to achieve the following theoretical
guarantee: Each minimum point of the representing function
is an input to the tested floating-point program, and the input
necessarily triggers a new branch unless all branches have
been covered. This guarantee is critical not only for the
soundness of our approach, but also for its efficiency — the
unconstrained programming process is designed to cover only
new branches; it does not waste efforts on covering already
covered branches.

We have implemented our approach into a tool called
CoverMe. CoverMe first derives the representing function
from the program under test. Then, it uses an existing uncon-
strained programming algorithm to compute the minimum
points. Note that the theoretical guarantee mentioned above
allows us to apply any unconstrained programming algorithm
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1 double tanh(double x){
2 int jx, ix;
3 jx = *(1+(int*)&x); // High word of x
4 ix = jx&0x7fffffff;
5 if(ix>=0x7ff00000) {
6 if (jx>=0) ...;
7 else ...;
8 }
9 if (ix < 0x40360000) {

10 if (ix<0x3c800000) ...;

12 if (ix>=0x3ff00000) ...;
13 else ...;
14 }
15 else ...;
16 return ...;
17 }

Figure 1: Benchmark program s_tanh.c taken from Fdlibm.

as a black box. Our implementation uses an off-the-shelf
Monte Carlo Markov Chain (MCMC) [11] tool.

CoverMe has achieved high or full branch coverage for
the tested floating-point programs. Fig. 1 lists the program
s_tanh.c from our benchmark suite Fdlibm [6]. The program
takes a double input. In Line 3, variable jx is assigned
with the high word of x according to the comment given
in the source code; the right-hand-side expression in the
assignment takes the address of x (&x), cast it as a pointer-
to-int (int*), add 1, and dereference the resulting pointer.
In Line 4, variable ix is assigned with jx whose sign bit is
masked off. Lines 5-15 are two nested conditional statements
on ix and jx, which contain 16 branches in total according
to Gcov [7]. Testing this type of programs is beyond the
capabilities of traditional symbolic execution tools such
as Klee [16]. CoverMe achieves full coverage within 0.7
seconds, dramatically outperforming our compared tools,
including random testing, Google’s AFL [1], and Austin [26]
(a tool that combines symbolic execution and search-based
heuristics). See details in Sect. 6.

Contributions This work introduces a promising auto-
mated testing solution for programs that are heavy on floating-
point computation. Our approach designs the representing
function whose minimum points are guaranteed to exercise
new branches of the floating-point program. This guarantee
allows us to apply any unconstrained programming solution
as a black box, and to efficiently generate test inputs for
covering program branches.

Our implementation, CoverMe, proves to be highly effi-
cient and effective. It achieves 90.8% branch coverage on
average, which is substantially higher than those obtained by
random testing (38.0%), AFL (72.9%), and Austin (42.8%).

Paper Outline We structure the rest of the paper as follows.
Sect. 2 presents background material on unconstrained pro-
gramming. Sect. 3 gives an overview of our approach, and
Sect. 4 presents the algorithm. Sect. 5 describes our imple-

mentation CoverMe, and Sect. 6 describes our evaluation.
Sect. 7 surveys related work and Sect. 8 concludes the paper.
For completeness, Sect. A-D of an extended version of this
paper [5] provide additional details on our approach.

Notation We write for floating-point numbers, for
integers, >0 for strictly positive integers. we use the ternary
operation B ? a : a0 to denote an evaluation to a if B
holds, or a0 otherwise. The lambda terms in the form of
lx. f (x) may denote mathematical function f or its machine
implementation according to the given context.

2. Background
This section presents the definition and algorithms of un-
constrained programming that will be used in this paper. As
mentioned in Sect. 1, we will treat the unconstrained pro-
gramming algorithms as black boxes.

Unconstrained Programming We formalize unconstrained
programming as the problem below [19]:

Given f : n !
Find x⇤ 2 n for which f (x⇤) f (x) for all x 2 n

where f is the objective function; x⇤, if found, is called a
minimum point; and f (x⇤) is the minimum. An example is

f (x1,x2) = (x1 �3)2 +(x2 �5)2, (1)

which has the minimum point x⇤ = (3,5).

Unconstrained Programming Algorithms We consider
two kinds of algorithms, known as local optimization and
global optimization. Local optimization focuses on how func-
tions are shaped near a given input and where a minimum can
be found at local regions. It usually involves standard tech-
niques such as Newton’s or the steepest descent methods [34].
Fig. 2(a) shows a common local optimization method with
the objective function f (x) that equals 0 if x  1, or (x�1)2

otherwise. The algorithm uses tangents of f to converge to a
minimum point quickly. In general, local optimization is usu-
ally fast. If the objective function is smooth to some degree,
the local optimization can deduce function behavior in the
neighborhood of a particular point x by using information at
x only (the tangent here).

Global optimization for unconstrained programming
searches for minimum points over n. Many global opti-
mization algorithms have been developed. This work uses
Monte Carlo Markov Chain (MCMC) [11]. MCMC is a
sampling method that targets (usually unknown) probability
distributions. A fundamental fact is that MCMC sampling
follows the target distributions asymptotically, which is for-
malized by the lemma below. For simplicity, we present the
lemma in the form of discrete-valued probabilities [11].

Lemma 2.1. Let x be a random variable, A be an enumerable
set of the possible values of x, f be a target probability
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Figure 2: (a) Local optimization example with objective function
lx.x  1 ? 0 : (x � 1)2. The local optimization algorithm uses
tangents of the curve to quickly converge to a minimum point;
(b) Global optimization example with objective function lx.x 
1 ? ((x+1)2 �4)2 : (x2 �4)2. The MCMC method starts from p0,
converges to local minimum p1, performs a Monte-Carlo move to
p2 and converges to p3. Then it moves to p4 and converges to p5.

distribution for x, i.e., the probability of x taking value a 2 A
is f (a). Then, an MCMC sampling sequence x1, . . . ,xn, . . .
satisfies the property that Prob(xn = a)! f (a).

For example, consider the target distribution of coin
tossing with 0.5 probability of getting a head. An MCMC
sampling is a sequence of random variables x1,. . . , xn, . . .,
such that the probability of xn being head converges to 0.5.

Using MCMC to solve unconstrained programming prob-
lems provides multiple advantages in practice. First, Lem. 2.1
ensures that MCMC sampling can be configured to attain the
minimum points with higher probability than the other points.
Second, MCMC integrates well with local optimization. An
example is the Basinhopping algorithm [29] used in Sect. 5.
Third, MCMC techniques are robust; some variants can even
handle high dimensional problems [38] or non-smooth ob-
jective functions [20]. Our approach uses unconstrained opti-
mization as a black box. Fig. 2(b) provides a simple example.
Steps p0 ! p1, p2 ! p3, and p4 ! p5 employ local optimiza-
tion; Steps p1 ! p2 and p3 ! p4, known as Monte-Carlo
moves [11], avoid the MCMC sampling being trapped in the
local minimum points.

3. Overview
This section states the problem and illustrates our solution.

Notation Let FOO be the program under test with N condi-
tional statements, labeled by l0,. . . ,lN�1. Each li has a true
branch iT and a false branch iF . We write dom(FOO) to de-
note the input domain of program FOO.

3.1 Problem Statement
Definition 3.1. The problem of branch coverage-based test-
ing aims to find a set of inputs X ✓ dom(FOO) that covers all
branches of FOO. Here, we say a branch is “covered” by X if
it is passed through by executing FOO with an input of X .

We scope the problem with three assumptions. They will
be partially relaxed in our implementation (Sect. 5):

Step 1.

Step 2.

Step 3.

X: A set of           ’s global minimum points, which 
saturates (therefore covers) all branches of

FOO: Program under test
in any LLVM-supported language
type_t FOO (double x1, double x2, ...)

pen (.cpp)
double pen (int i, int op, double lhs, double rhs)

FOO_I: Instrumented program (.bc)
type_t FOO_I (double x1, double x2, ...)

loader (.cpp)
void LOADER (double* P)

FOO_R (.cpp)
void FOO_R (double* P)

libr.so

void FOO_R (double* P)

MCMC minimization procedure (.py)
basinhopping (func, sp, n_iter, callback)

LLVM pass
Linking

FOO: Program under test
in any LLVM-supported language
type_t FOO (double x1, double x2, ...)

pen (.cpp)
double pen (int i, int op, double lhs, double rhs)

FOO_I: Instrumented program (.bc)
type_t FOO_I (double x1, double x2, ...)

loader (.cpp)
void LOADER (double* P)

FOO_R (.cpp)
void FOO_R (double* P)

libr.so

void FOO_R (double* P)

MCMC minimization procedure (.py)
basinhopping (func, sp, n_iter, callback)

LLVM pass
Linking

: Program under test

: Instrumented program

FOO: Program under test
in any LLVM-supported language
type_t FOO (double x1, double x2, ...)

pen (.cpp)
double pen (int i, int op, double lhs, double rhs)

FOO_I: Instrumented program (.bc)
type_t FOO_I (double x1, double x2, ...)

loader (.cpp)
void LOADER (double* P)

FOO_R (.cpp)
void FOO_R (double* P)

libr.so

void FOO_R (double* P)

MCMC minimization procedure (.py)
basinhopping (func, sp, n_iter, callback)

LLVM pass
Linking

Generated test inputs

FOO: Program under test
in any LLVM-supported language
type_t FOO (double x1, double x2, ...)

pen (.cpp)
double pen (int i, int op, double lhs, double rhs)

FOO_I: Instrumented program (.bc)
type_t FOO_I (double x1, double x2, ...)

loader (.cpp)
void LOADER (double* P)

FOO_R (.cpp)
void FOO_R (double* P)

libr.so

void FOO_R (double* P)

MCMC minimization procedure (.py)
basinhopping (func, sp, n_iter, callback)

LLVM pass
Linking FOO: Program under test

in any LLVM-supported language
type_t FOO (double x1, double x2, ...)

pen (.cpp)
double pen (int i, int op, double lhs, double rhs)

FOO_I: Instrumented program (.bc)
type_t FOO_I (double x1, double x2, ...)

loader (.cpp)
void LOADER (double* P)

FOO_R (.cpp)
void FOO_R (double* P)

libr.so

void FOO_R (double* P)

MCMC minimization procedure (.py)
basinhopping (func, sp, n_iter, callback)

LLVM pass
Linking

: Representing function

Figure 3: An illustration of our approach. The goal is to find
inputs that saturate (therefore cover) all branches of FOO, i.e.,
{0T ,0F ,1T ,1F}.

(a) The inputs of FOO are floating-point numbers;
(b) Each Boolean condition in FOO is an arithmetic compar-

ison between two floating-point variables or constants;
and

(c) Each branch of FOO is feasible, i.e., it is covered by an
input of program FOO.
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The concept below is crucial. It allows us to rewrite the
branch coverage-based testing problem as defined in Def. 3.1
to an equivalent, but easier-to-solve one.

Definition 3.2. Let X be a set of inputs generated during the
testing process. We say that a branch is saturated by X if
the branch itself and all its descendant branches, if any, are
covered by X . Here, a branch b0 is called a descendant branch
of b if there exists a control flow from b to b0. We write

Saturate(X) (2)

for the set of branches saturated by X .
The control-flow graph on the right

illustrates Def. 3.2. Suppose that an
input set X covers {0T ,0F ,1F}. Then
Saturate(X) = {0F ,1F}. Branch 1T is not
saturated because it is not covered; branch
0T is not saturated neither because its de-
scendant branch 1T is not covered.

Our approach reformulates the branch coverage-based
testing problem with the lemma below.

Lemma 3.3. Let FOO be the program under test. Assume
Def. 3.1(a-c) hold. Then, a set of inputs X ✓ dom(FOO)
saturates all FOO’s branches iff X covers all FOO’s branches.

By consequence, the goal of branch coverage-based test-
ing defined in Def. 3.1 can be equivalently stated: To find a
set of inputs X ✓ dom(FOO) that saturates all FOO’s branches.

3.2 Illustration of Our Approach
Fig. 3 illustrates our approach. The program under test has
two conditional statements l0 and l1. Our objective is to find
an input set that saturates all branches, namely, 0T , 0F , 1T ,
and 1F . Our approach proceeds in three steps:

Step 1 We inject the global variable r in FOO, and, immedi-
ately before each control point li, we inject the assignment

r= pen (3)

where pen invokes a code segment with parameters associated
with li. The idea of pen is to capture the distance of the
program input from saturating a branch that has not yet been
saturated. Observe that in Fig. 3, both injected pen return
different values depending on whether the branches at li are
saturated or not. FOO_I denotes the instrumented program.

Step 2 This step constructs the representing function that
we have mentioned in Sect. 1. The representing function is
the driver program FOO_R shown in Fig. 3. It initializes r to 1,
invokes FOO_I and then returns r as the output of FOO_R. That
is to say, FOO_R(x) for a given input x calculates the value of
r at the end of executing FOO_I(x).

The key in Steps 1 and 2 is to design pen so that FOO_R
meets the two conditions below:

C1. FOO_R(x)� 0 for all x, and

C2. FOO_R(x) = 0 iff x saturates a new branch. In other words,
a branch that has not been saturated by the generated input
set X becomes saturated with X [{x}, i.e., Saturate(X) 6=
Saturate(X [{x}).

Conditions C1 and C2 are essential because they allow us
to transform a branch coverage-based testing problem to an
unconstrained programming problem. Ideally, we can then
saturate all branches of FOO by repeatedly minimizing FOO_R
as shown in the step below.

Step 3 We calculate the minimum points of FOO_R via
unconstrained programming algorithms described in Sect. 2.
Typically, we start with an input set X = /0 and Saturate(X) =
/0. We minimize FOO_R and obtain a minimum point x⇤ which
necessarily saturates a new branch by condition C2. Then we
have X = {x⇤} and we minimize FOO_R again which gives
another input x⇤⇤ and {x⇤,x⇤⇤} saturates a branch that is not
saturated by {x⇤}. We continue this process until all branches
are saturated. Note that when Step 3 terminates, FOO_R(x)
must be strictly positive for any input x, due to C1 and C2.

Tab. 1 illustrates a scenario of how our approach saturates
all branches of program FOO given in Fig. 3. Each “#n” below
corresponds to a line in the table. We write pen0 and pen1
to distinguish the two pen injected at l0 and l1 respectively.
(#1) Initially, no branch has been saturated. Both pen0 and
pen1 set r = 0, and FOO_R returns 0 for any input. Suppose
x⇤ = 0.7 is found as the minimum point. (#2) The branch 1F
is now saturated and 1T is not. Thus, pen1 sets r= (y�4)2.
Minimizing FOO_R gives x⇤ = �3.0, 1.0, or 2.0. We have
illustrated how these minimum points can be computed in
unconstrained programming in Fig. 2(b). Suppose x⇤ = 1.0
is found. (#3) Both 1T and 1F , as well as 0T , are saturated
by the generated inputs {0.7,1.0}. Thus, pen1 returns the
previous r and FOO_R amounts to pen0, which returns 0 if
x > 1 or (x�1)2+e otherwise, where e is a small predefined
constant (Sect. 4). Suppose x⇤ = 1.1 is found as the minimum
point. (#4) All branches have been saturated. In this case, both
pen0 and pen1 return r. FOO_R returns 1 for all x since FOO_R
initializes r as 1. Suppose the minimum found is x⇤ =�5.2.
It necessarily satisfies FOO_R(x⇤)> 0, which confirms that all
branches have been saturated (due to C1 and C2).

4. Algorithm
We provide details corresponding to the three steps in
Sect. 3.2. The algorithm is summarized in Algo. 1.

Algorithm for Step 1 The outcome of this step is the
instrumented program FOO_I. As explained in Sect. 3.2, the
essence is to inject the variable r and the assignment r= pen
before each conditional statement (Algo. 1, Lines 1-4).

To define pen, we first introduce a set of helper functions
that are sometimes known as branch distance. There are many
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Table 1: A scenario of how our approach saturates all branches of
FOO by repeatedly minimizing FOO_R. Column “Saturate”: Branches
that have been saturated. Column “FOO_R”: The representing func-
tion and its plot. Column “x⇤”: The point where FOO_R attains the
minimum. Column “X”: Generated test inputs.

.

# Saturate FOO_R x⇤ X

1 /0 lx.0 0.7 {0.7}

2 {1F} lx.

(
((x+1)2 �4)2 x  1
(x2 �4)2 else

1.0 {0.7,1.0}

3 {0T ,1T ,
1F}

lx.

(
0 x > 1
(x�1)2 + e else

1.1 {0.7,1.0,
1.1}

4 {0T ,1T ,
0F ,1F}

lx.1 �5.2 {0.7,1.0,
1.1,�5.2}

different forms of branch distance in the literature [25, 31].
We define ours with respect to an arithmetic condition a op b.

Definition 4.1. Let a,b 2 , op 2 {==,,<, 6=,�,>},
e 2 >0. We define branch distance de(op,a,b) as follows:

de(==,a,b) def
= (a�b)2 (4)

de(,a,b) def
= (a  b) ? 0 : (a�b)2 (5)

de(<,a,b) def
= (a < b) ? 0 : (a�b)2 + e (6)

de( 6=,a,b) def
= (a 6= b) ? 0 : e (7)

and de(�,a,b) def
= de(,b,a), de(>,a,b) def

= de(<,b,a). We
use e to denote a small positive floating-point close to
machine epsilon. The idea is to treat a strict floating-point
inequality x > y as a non-strict inequality x � y+ e , etc. We
will drop the explicit reference to e when using the branch
distance.

The intention of d(op,a,b) is to quantify how far a and b
are from attaining a op b. For example, d(==,a,b) is strictly
positive when a 6= b, becomes smaller when a and b go closer,
and vanishes when a == b. The following property holds:

d(op,a,b)� 0 and d(op,a,b) = 0 , a op b. (8)

As an analogue, we set pen to quantify how far an input
is from saturating a new branch. We define pen following
Algo. 1, Lines 14-23.

Definition 4.2. For branch coverage-based testing, the func-
tion pen has four parameters, namely, the label of the con-

ditional statement li, op, and a and b from the arithmetic
condition a op b.

(a) If neither of the two branches at li is saturated, we let
pen return 0 because any input saturates a new branch
(Lines 16-17).

(b) If one branch at li is saturated but the other is not, we set r
to be the distance to the unsaturated branch (Lines 18-21).

(c) If both branches at li have already been saturated, pen
returns the previous value of variable r (Lines 22-23).

For example, pen at l0 and l1 are invoked as pen(li,,x,1)
and pen(l1,==,y,4) respectively in Fig. 3.

Algorithm for Step 2 This step constructs the representing
function FOO_R (Algo. 1, Line 5). Its input domain is the same
as that of FOO_I and FOO, and its output domain is double.
FOO_R initializes r to 1. The initialization is to guarantee that
FOO_R returns a non-negative value whenever all branches
are saturated (Sect. 3.2, Step 2). FOO_R then invokes FOO_I(x)
and returns the value of r at the end of executing FOO_I(x).

As mentioned in Sect. 3.2, it is important to ensure that
FOO_R meets conditions C1 and C2. The condition C1 holds
true since FOO_R returns the value of the instrumented r,
which is never assigned a negative quantity. The theorem
below states FOO_R also satisfies C2.

Theorem 4.3. Let FOO_R be the program constructed in
Algo. 1, and S the branches that have been saturated. Then,
for any input x 2 dom(FOO), FOO_R(x) = 0 , x saturates a
branch that does not belong to S.

Proof. We first prove the ) direction. Take an arbitrary x
such that FOO_R(x) = 0. Let t = [l0, . . . ln] be the path in FOO
passed through by executing FOO(x). We know, from Lines 2-
4 of the algorithm, that each li is preceded by an invocation of
pen in FOO_R. We write peni for the one injected before li and
divide {peni | i 2 [1,n]} into three groups. For the given input
x, we let P1, P2 and P3 denote the groups of peni that are
defined in Def. 4.2(a), (b) and (c), respectively. Then, we can
always have a prefix path of t = [l0, . . . lm], with 0  m  n
such that each peni for i 2 [m+1,n] belongs to P3, and each
peni for i 2 [0,m] belongs to either P1 or P2. Here, we can
guarantee the existence of such an m because, otherwise,
all peni belong in P3, and FOO_R becomes lx.1. The latter
contradicts the assumption that FOO_R(x) = 0. Because each
peni for i > m does nothing but performs r = r, we know
that FOO_R(x) equals to the exact value of r that penm assigns.
Now consider two disjunctive cases on penm. If penm is in
P1, we immediately conclude that x saturates a new branch.
Otherwise, if penm is in P2, we obtains the same from Eq. (8).
Thus, we have established the ) direction of the theorem.

To prove the ( direction, we use the same notation as
above, and let x be the input that saturates a new branch,
and [l0, . . . , ln] be the exercised path. Assume that lm where
0  m  n corresponds to the newly saturated branch. We
know from the algorithm that (1) penm updates r to 0, and (2)
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Algorithm 1: Branch coverage-based testing
Input: FOO Program under test

n_start Number of starting points
LM Local optimization used in MCMC
n_iter Number of iterations for MCMC

Output: X Generated input set

/* Step 1 */

1 Inject global variable r in FOO

2 for conditional statement li in FOO do
3 Let the Boolean condition at li be a op b where

op 2 {,<,=,>,�, 6=}
4 Insert assignment r= pen(li,op,a,b) before li

/* Step 2 */

5 Let FOO_I be the newly instrumented program, and FOO_R be:
double FOO_R(double x) {r = 1; FOO_I(x); return r;}

/* Step 3 */

6 Let Saturate = /0
7 Let X = /0
8 for k = 1 to n_start do
9 Randomly take a starting point x

10 Let x⇤ = MCMC(FOO_R,x)
11 if FOO_R(x⇤) = 0 then X = X [{x⇤}
12 Update Saturate

13 return X

14 Function pen(li,op,a,b)
15 Let iT and iF be the true and the false branches at li
16 if iT 62 Saturate and iF 62 Saturate then
17 return 0

18 else if iT 62 Saturate and iF 2 Saturate then
19 return d(op,a,b) /* d: Branch distance */

20 else if iT 2 Saturate and iF 62 Saturate then
21 return d(op,a,b) /* op: the opposite of op */

22 else /* iT 2 Saturate and iF 2 Saturate */

23 return r

24 Function MCMC( f , x)
25 xL = LM( f ,x)

/* Local minimization */

26 for k = 1 to n_iter do
27 Let d be a random perturbation generation from a

predefined distribution
28 Let exL = LM( f ,xL +d )
29 if f ( exL)< f (xL) then accept = true
30 else
31 Let m be a random number generated from the

uniform distribution on [0,1]
32 Let accept be the Boolean m < exp( f (xL)� f ( exL))

33 if accept then xL = exL

34 return xL

each peni such that i > m maintains the value of r because
their descendant branches have been saturated. We have thus
proven the ( direction of the theorem.

Algorithm for Step 3 The main loop (Algo. 1, Lines 8-12)
relies on an existing MCMC engine. It takes an objective
function and a starting point and outputs x⇤ that it regards
as a minimum point. Each iteration of the loop launches
MCMC from a randomly selected starting point (Line 9).

From each starting point, MCMC computes the minimum
point x⇤ (Line 10). If FOO_R(x⇤) = 0, x⇤ is to be added to X
(Line 11). Thm. 4.3 ensures that x⇤ saturates a new branch
if FOO_R(x⇤) = 0. Therefore, in theory, we only need to set
n_start = 2⇤N where N denotes the number of conditional
statements, so to saturate all 2 ⇤ N branches. In practice,
however, we set n_start > 2 ⇤ N because MCMC cannot
guarantee that its output is a true global minimum point.

The MCMC procedure (Algo. 1, Lines 24-34) is also
known as the Basinhopping algorithm [29]. It is an MCMC
sampling over the space of the local minimum points [30].
The random starting point x is first updated to a local min-
imum point xL (Line 25). Each iteration (Lines 26-33) is
composed of the two phases that are classic in the Metropolis-
Hastings algorithm family of MCMC. In the first phase (Lines
27-28), the algorithm proposes a sample exL from the current
sample x. The sample exL is obtained with a perturbation d fol-
lowed by a local minimization, i.e., exL = LM( f ,xL +d ) (Line
28), where LM denotes a local minimization in Basinhopping,
and f is the objective function. The second phase (Lines 29-
33) decides whether the proposed exL should be accepted as
the next sampling point. If f ( exL) < f (xL), the proposed exL
will be sampled; otherwise, exL may still be sampled, but only
with the probability of exp(( f (xL)� f ( exL))/T ), in which T
(called the annealing temperature) is set to 1 in Algo. 1 for
simplicity.

5. Implementation
As a proof-of-concept demonstration, we have implemented
Algo. 1 into the tool CoverMe. This section presents its
implementation and technical details.

5.1 Frontend of CoverMe
The frontend implements Steps 1 and 2 of Algo. 1. Cov-
erMe compiles the program under test FOO to LLVM IR
with Clang [2]. Then it uses an LLVM pass [9] to inject
assignments. The program under test can be in any LLVM-
supported language, e.g., Ada, the C/C++ language family,
or Julia, etc. Our implementation has been tested on C code.

Fig. 4 illustrates FOO as a function of signature type_t
FOO (type_t1 x1, type_t2 x2, ...). The return type
(output) of the function, type_t, can be any kind of types
supported by C, whereas the types of the input parame-
ters, type_t1, type_t2, ..., are restricted to double or
double*. We have explained the signature of pen in Def. 4.2.
Note that CoverMe does not inject pen itself into FOO, but
instead injects assignments that invoke pen. We implement
pen in a separate C++ file.

The frontend also links FOO_I and FOO_R with a simple
program loader into a shared object file libr.so, which
is the outcome of the frontend. It stores the representing
function in the form of a shared object file (.so file).
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Figure 4: CoverMe implementation.

5.2 Backend of CoverMe
The backend implements Step 3 of Algo. 1. It invokes the rep-
resenting function via libr.so. The kernel of the backend is
an external MCMC engine. It uses the off-the-shelf implemen-
tation known as Basinhopping from the Scipy Optimization
package [10]. Basinhopping takes a range of input param-
eters. Fig. 4 shows the important ones for our implemen-
tation basinhopping(f, sp, n_iter, call_back), where
f refers to the representing function from libr.so, sp is a
starting point as a Python Numpy array, n_iter is the iteration
number used in Algo. 1 and call_back is a client-defined
procedure. Basinhopping invokes call_back at the end of
each iteration (Algo. 1, Lines 24-34). The call_back proce-
dure allows CoverMe to terminate if it saturates all branches.
In this way, CoverMe does not need to wait until passing all
n_start iterations (Algo. 1, Lines 8-12).

5.3 Technical Details
Sect. 3 assumes Def. 3.1(a-c) for the sake of simplification.
This section discusses how CoverMe relaxes the assumptions

when handling real-world floating-point code. We also show
how CoverMe handles function calls at the end of this section.

Handling Pointers (Relaxing Def. 3.1(a)) We consider
only pointers to floating-point numbers. They may occur
(1) in an input parameter, (2) in a conditional statement, or
(3) in the code body but not in the conditional statement.

CoverMe inherently handles case (3) because it is execution-
based and does not need to analyze pointers and their effects.
CoverMe currently does not handle case (2) and ignores these
conditional statements by not injecting pen before them.

Below we explain how CoverMe deals with case (1).
A branch coverage testing problem for a program whose
inputs are pointers to doubles, can be regarded as the
same problem with a simplified program under test. For in-
stance, finding test inputs to cover branches of program void
FOO(double* p) {if (*p <= 1)... } can be reduced to
testing the program void FOO_with_no_pointer (double
x) {if (x <= 1)... }. CoverMe transforms program FOO
to FOO_with_no_pointer if a FOO’s input parameter is a
floating-point pointer.

Handling Comparison between Non-floating-point Ex-
pressions (Relaxing Def. 3.1(b)) We have encountered
situations where a conditional statement invokes a compar-
ison between non floating-point numbers. CoverMe han-
dles these situations by first promoting the non floating-
point numbers to floating-point numbers and then injecting
pen as described in Algo. 1. For example, before a condi-
tional statement like if (xi op yi) where xi and yi are
integers, CoverMe injects r = pen (i, op, (double) x,
(double) y));. Note that such an approach does not allow
us to handle data types that are incompatible with floating-
point types, e.g., conditions like if (p != Null), which
CoverMe has to ignore.

Handling Infeasible Branches (Relaxing Def. 3.1(c)) In-
feasible branches are those that cannot be exercised by any in-
put. Determining which branch is infeasible is difficult in gen-
eral. CoverMe uses a heuristic to detect infeasible branches.
When CoverMe finds a minimum that is not zero, it deems
the unvisited branch of the last conditional to be infeasible
and adds it to Saturate, the set of unvisited and deemed-to-be
infeasible branches.

Imagine that we modify l1 of the program FOO in Fig. 3 to
the conditional statement if (y == -1). Then the branch 1T
becomes infeasible. We rewrite this modified program below
and illustrate how we deal with infeasible branches.
l0: if (x <= 1) {x++};

y = square(x);
l1: if (y == -1) {...}

where we omit the concrete implementation of square.
Let FOO_R denote the representing function constructed for

the program. In the minimization process, whenever CoverMe
obtains x⇤ such that FOO_R(x⇤)> 0, CoverMe selects a branch
that it regards infeasible. CoverMe selects the branch as
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follows: Suppose x⇤ exercises a path t whose last conditional
statement is denoted by lz, and, without loss of generality,
suppose zT is passed through by t , then CoverMe regards zF
as an infeasible branch.

In the modified program above, if 1F has been saturated,
the representing function evaluates to (y+1)2 or (y+1)2 +
1, where y equals to the non-negative square(x). Thus,
the minimum point x⇤ must satisfy FOO_R(x⇤) > 0 and its
triggered path ends with branch 1F . CoverMe then regards
1T as an infeasible branch.

CoverMe then regards the infeasible branches as already
saturated. It means, in line 12 of Algo. 1, CoverMe updates
Saturate with saturated branches and infeasible branches
(more precisely, branches that CoverMe regards infeasible).

The presented heuristic works well in practice (See
Sect. 6), but we do not claim that our heuristic always cor-
rectly detects infeasible branches.

Handling Function Calls By default, CoverMe injects
r = peni only in the entry function to test. If the entry
function invokes other external functions, they will not be
transformed. For example, in the program FOO of Fig. 3, we do
not transform square(x). In this way, CoverMe only attempts
to saturate all branches for a single function at a time.

However, CoverMe can also easily handle functions in-
voked by its entry function. As a simple example, consider:

void FOO (double x) { GOO(x); }
void GOO (double x) { if (sin(x) <= 0.99) ... }

If CoverMe aims to saturate FOO and GOO but not sin, and
it sets FOO as the entry function, then it instruments both FOO
and GOO. Only GOO has a conditional statement, and CoverMe
injects an assignment on r in GOO.

6. Evaluation
This section presents our evaluation of CoverMe. All experi-
ments are performed on a laptop with a 2.6 GHz Intel Core
i7 running a Ubuntu 14.04 virtual machine with 4GB RAM.
The main results are presented in Tab. 2, 3 and Fig. 5.

6.1 Experimental Setup
Benchmarks Our benchmarks are C floating-point pro-
grams from the Freely Distributable Math Library (Fdlibm)
5.3, developed by Sun Microsystems, Inc. These programs are
available from the network library netlib. We choose Fdlibm
because it represents a set of floating-point programs with
reference quality and a large user group. For example, the
Java SE 8’s math library is defined with respect to Fdlibm
5.3. [3], Fdlibm is also ported to Matlab, JavaScript, and has
been integrated in Android.

Fdlibm 5.3 has 80 programs. Each program defines one or
multiple math functions. In total, Fdlibm 5.3 contains 92 math
functions. Among them, we exclude 36 functions that have
no branch, 11 functions involving input parameters that are
not floating-point, and 5 static C functions. Our benchmarks

include all remaining 40 functions. Sect. A of [5] lists all
excluded functions in Fdlibm 5.3.

Parameter Settings CoverMe supports three parameters:
(1) the Monte-Carlo iteration number n_iter, (2) the local
optimization algorithm LM, and (3) the number of starting
points n_start. They correspond to the three input parameters
of Algo. 1. Our experiment sets n_iter = 5, n_start = 500,
and LM = “powell” (i.e., Powell’s algorithm [37]).

Tools for Comparison We have compared CoverMe with
three tools that support floating-point coverage-based testing:

• Rand is a pure random testing tool. We have implemented
Rand using a pseudo-random number generator.

• AFL [1] is a gray-box testing tool released by the Google
security team. It integrates a variety of guided search
strategies and employs genetic algorithms to efficiently
increase code coverage.

• Austin [26] is a coverage-based testing tool that imple-
ments symbolic execution and search-based heuristics.
Austin shows to [27] be more effective than a testing tool
called CUTE [39] (which is not publicly available).

We have decided to not consider the following tools:

• Klee [16] is the state-of-the-art implementation of sym-
bolic execution. We do not consider Klee because its
expression language does not support floating-point con-
straints. In addition, many operations in our benchmark
programs, such as pointer reference, dereference, type
casting, are not supported by Klee’s backend solver
STP [22], or any other backend solvers compatible with
the Klee Multi-solver extension [35].1

• Klee-FP [18] is a variant of Klee geared toward reason-
ing about floating-point value equivalence. It determines
equivalence by checking whether two floating-point val-
ues are produced by the same operations [18]. We do not
consider Klee-FP because its special-purpose design does
not support coverage-based testing.

• Pex [42] is a coverage tool based on dynamic symbolic
execution. We do not consider Pex because it can only
run for .NET programs on Windows whereas our tested
programs are in C, and our testing platform is Linux.

• FloPSy [28] is a floating-point testing tool that combines
search based testing and symbolic execution. We do not
consider this tool because it is developed by the same
author of Austin and before Austin is released, and the
tool is not available to us.

Coverage Measurement Our evaluation focuses on branch
coverage. Sect. C also shows our line coverage results. For
CoverMe and Rand, we use the Gnu coverage tool Gcov [7].

1In the recent Klee-dev mailing list, the Klee developers mentioned that
Klee or its variant Klee-FP only has basic floating-point support and they
are still "working on full FP support for Klee" [8].
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Figure 5: Benchmark results corresponding to the data given in Tab. 2. The y-axis refers to the branch coverage; the x-axis refers to the
benchmarks.

For AFL, we use AFL-cov [4], a Gcov-based coverage
analysis tool for AFL. For Austin, we calculate the branch
coverage by the number of covered branches provided in the
csv file produced by Austin when it terminates.

Time Measurement To compare the running time of Cov-
erMe with the other tools requires careful design. CoverMe,
Rand, and AFL all have the potentials to achieve higher
coverage if given more time or iteration cycles. CoverMe
terminates when it exhausts its iterations or achieves full cov-
erage, whereas Random testing and AFL do not terminate by
themselves. In our experiment, we first run CoverMe until it
terminates using the parameters provided above. Then, we
run Rand and AFL with ten times of the CoverMe time.

Austin terminates when it decides that no more coverage
can be attained. It reports no coverage results until it termi-
nates its calculation. Thus, it is not reasonable to set the same
amount of time for Austin as AFL and Rand. The time for
Austin refers to the time Austin spends when it stops running.

6.2 Quantitative Results
6.2.1 CoverMe versus Random testing
As a sanity check, we first compare CoverMe with Rand. In
Tab. 2, we sort all programs (Col. 1) and functions (Col. 2)
by their names and give the numbers of branches (Col. 3).

Tab. 2, Col. 6 gives the time spent by CoverMe. The time
refers to the wall time reported by the Linux command time.
Observe that the time varies considerably, ranging from 0.1
second (s_erf.c, erfc) to 22.1 seconds (e_fmod.c). Besides,
the time is not necessarily correlated with the number of
branches. For example, CoverMe takes 1.1 seconds to run
s_expm1.c (42 branches) and 10.1 seconds to run s_floor.c
(30 branches). It shows the potential for real-world program

testing since CoverMe may not be very sensitive to the
number of lines or branches.

Tab. 2, Col. 4 gives the time spent by Rand. Since Rand
does not terminate by itself, the time refers to the timeout
bound. As mentioned above, we set the bound as ten times of
the CoverMe time.

Tab. 2, Col. 7 and 9 show the branch coverage results of
Rand and CoverMe respectively. The coverage is reported
by the Gnu coverage tool Gcov [7]. CoverMe achieves 100%
coverage for 11 out of 40 tested functions with an average
of 90.8% coverage, while Rand does not achieve any 100%
coverage and attains only 38.0% coverage on average. The
last row of the table shows the mean values. Observe that
all values in Col. 9 are larger than the corresponding values
in Col. 7. It means that CoverMe achieves higher branch
coverage than Rand for every benchmark program. The result
validates our sanity check.

Col. 10 is the improvement of CoverMe versus Rand. We
calculate the coverage improvement as the difference be-
tween their percentages. CoverMe provides 52.9% coverage
improvement on average.

Remark 6.1. Tab. 2 shows that CoverMe achieves partial
coverage for some tested programs. The incompleteness
occurs in two situations: (1) The program under test has
unreachable branches; (2) The representing function fails to
confirm FOO_R = 0 when it in fact holds (Thm. 4.3). The
latter can be caused by a weak optimization backend, which
produces sub-optimal minimum points, or by floating-point
inaccuracy when evaluating FOO_R. Sect. D of the paper’s
extended version [5] illustrates these two situations.

6.2.2 CoverMe versus AFL
Tab. 2 also gives the experimental results of AFL. Col. 5
corresponds to the “run time” statistics provided by the
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Table 2: CoverMe versus Rand and AFL. The benchmark programs are taken from Fdlibm [6]. The coverage percentage is reported by
Gcov [7]. The time for CoverMe refers to the wall time. The times for Rand and AFL are set to be ten times of the CoverMe time.

Benchmark Time (s) Branch (%) Improvement (%)
File Function #Branches Rand AFL CoverMe Rand AFL CoverMe CoverMe vs. Rand CoverMe vs. AFL

e_acos.c ieee754_acos(double) 12 78 78 7.8 16.7 100.0 100.0 83.3 0.0

e_acosh.c ieee754_acosh(double) 10 23 23 2.3 40.0 100.0 90.0 50.0 -10.0

e_asin.c ieee754_asin(double) 14 80 80 8.0 14.3 85.7 92.9 78.6 7.1

e_atan2.c ieee754_atan2(double,double) 44 174 174 17.4 34.1 86.4 63.6 29.6 -22.7

e_atanh.c ieee754_atanh(double) 12 81 81 8.1 8.8 75.0 91.7 82.8 16.7

e_cosh.c ieee754_cosh(double) 16 82 82 8.2 37.5 81.3 93.8 56.3 12.5

e_exp.c ieee754_exp(double) 24 84 84 8.4 20.8 83.3 96.7 75.8 13.3

e_fmod.c ieee754_fmod(double,double) 60 221 221 22.1 48.3 53.3 70.0 21.7 16.7

e_hypot.c ieee754_hypot(double,double) 22 156 156 15.6 40.9 54.5 90.9 50.0 36.4

e_j0.c ieee754_j0(double) 18 90 90 9.0 33.3 88.9 94.4 61.1 5.6

ieee754_y0(double) 16 7 7 0.7 56.3 75.0 100.0 43.8 25.0

e_j1.c ieee754_j1(double) 16 102 102 10.2 50.0 75.0 93.8 43.8 18.8

ieee754_y1(double) 16 7 7 0.7 56.3 75.0 100.0 43.8 25.0

e_log.c ieee754_log(double) 22 34 34 3.4 59.1 72.7 90.9 31.8 18.2

e_log10.c ieee754_log10(double) 8 11 11 1.1 62.5 75.0 87.5 25.0 12.5

e_pow.c ieee754_pow(double,double) 114 188 188 18.8 15.8 88.6 81.6 65.8 -7.0

e_rem_pio2.c ieee754_rem_pio2(double,double*) 30 11 11 1.1 33.3 86.7 93.3 60.0 6.7

e_remainder.c ieee754_remainder(double,double) 22 22 22 2.2 45.5 50.0 100.0 54.6 50.0

e_scalb.c ieee754_scalb(double,double) 14 85 85 8.5 50.0 42.9 92.9 42.9 50.0

e_sinh.c ieee754_sinh(double) 20 6 6 0.6 35.0 70.0 95.0 60.0 25.0

e_sqrt.c iddd754_sqrt(double) 46 156 156 15.6 69.6 71.7 82.6 13.0 10.9

k_cos.c kernel_cos(double,double) 8 154 154 15.4 37.5 87.5 87.5 50.0 0.0

s_asinh.c asinh(double) 12 84 84 8.4 41.7 83.3 91.7 50.0 8.3

s_atan.c atan(double) 26 85 85 8.5 19.2 15.4 88.5 69.2 73.1

s_cbrt.c cbrt(double) 6 4 4 0.4 50.0 66.7 83.3 33.3 16.7

s_ceil.c ceil(double) 30 88 88 8.8 10.0 83.3 83.3 73.3 0.0

s_cos.c cos (double) 8 4 4 0.4 75.0 87.5 100.0 25.0 12.5

s_erf.c erf(double) 20 90 90 9.0 30.0 85.0 100.0 70.0 15.0

erfc(double) 24 1 1 0.1 25.0 79.2 100.0 75.0 20.8

s_expm1.c expm1(double) 42 11 11 1.1 21.4 85.7 97.6 76.2 11.9

s_floor.c floor(double) 30 101 101 10.1 10.0 83.3 83.3 73.3 0.0

s_ilogb.c ilogb(double) 12 83 83 8.3 16.7 16.7 75.0 58.3 58.3

s_log1p.c log1p(double) 36 99 99 9.9 38.9 77.8 88.9 50.0 11.1

s_logb.c logb(double) 6 3 3 0.3 50.0 16.7 83.3 33.3 66.7

s_modf.c modf(double, double*) 10 35 35 3.5 33.3 80.0 100.0 66.7 20.0

s_nextafter.c nextafter(double,double) 44 175 175 17.5 59.1 65.9 79.6 20.5 13.6

s_rint.c rint(double) 20 30 30 3.0 15.0 75.0 90.0 75.0 15.0

s_sin.c sin (double) 8 3 3 0.3 75.0 87.5 100.0 25.0 12.5

s_tan.c tan(double) 4 3 3 0.3 50.0 75.0 100.0 50.0 25.0

s_tanh.c tanh(double) 12 7 7 0.7 33.3 75.0 100.0 66.7 25.0
MEAN 23 69 69 6.9 38.0 72.9 90.8 52.9 17.9
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frontend of AFL. Col. 8 shows the branch coverage of AFL.
As mentioned in Sect. 6.1, we terminate AFL once it spends
ten times of the CoverMe time. Sect. B of [5] gives additional
details on our AFL settings.

Our results show that AFL achieves 100% coverage for 2
out of 40 tested functions with an average of 72.9% coverage,
while CoverMe achieves 100% coverage for 11 out of 40
tested functions with an average of 90.8% coverage. The
average improvement is 17.9% (shown in the last row).

The last column is the improvement of CoverMe versus
AFL. We calculate the coverage improvement as the dif-
ference between their percentages. Observe that CoverMe
outperforms AFL for 33 out of 40 tested functions. The
largest improvement is 73.1% with program s_atan.c. For
five of tested functions, CoverMe achieves the same coverage
as AFL. There are three tested functions where CoverMe
achieves less (e_acosh.c, e_atan2.c, and e_pow.c).

Remark 6.2. We have further studied CoverMe’s coverage
on these three programs versus that of AFL. We have run
AFL with the same amount of time as CoverMe (rather than
ten times as much as CoverMe). With this setting, AFL does
not achieves 70.0% for e_acosh.c, 63.6% for e_atan2.c,
and 54.4% for e_pow.c, which are less than or equal to
CoverMe’s coverage.

That being said, comparing CoverMe and AFL by running
them using the same amount of time may be unfair because
AFL usually requires much time to obtain good code coverage
— the reason why we have set AFL to run ten times as much
time as CoverMe for the results reported in Tab. 2.

6.2.3 CoverMe versus Austin
Tab. 3 compares the results of CoverMe and Austin. We use
the same set of benchmarks as Tab. 2 (Col. 1-2). We use the
time (Col. 3-4) and the branch coverage metric (Col. 5-6) to
evaluate the efficiency and the coverage. The branch coverage
of Austin (Col. 5) is provided by Austin itself rather than by
Gcov. Gcov needs to have access to the generated test inputs
to report the coverage, but Austin does not provide a viable
way to access the generated test inputs.

Austin shows large performance variances over different
benchmarks, from 667.1 seconds (s_sin.c) to hours. As
shown in the last row of Tab. 3, Austin needs 6058.4 seconds
on average for the testing. The average time does not include
the benchmarks where Austin crashes2 or times out. Com-
pared with Austin, CoverMe is faster (Tab. 3, Col. 4) with 6.9
seconds on average.

CoverMe achieves a higher branch coverage (90.8%) than
Austin (42.8%). We also compare across Tab. 3 and Tab. 2.
On average, Austin provides slightly higher branch coverage
(42.8%) than Rand (38.0%), but lower than AFL (72.9%).

2Austin raised an exception when testing e_sqrt.c. The exception was
triggered by AustinOcaml/symbolic/symbolic.ml from Austin’s code, at
line 209, Column 1.

Col. 7-8 are the improvement metrics of CoverMe against
Austin. We calculate the Speedup (Col. 7) as the ratio of the
time spent by Austin and the time spent by CoverMe, and the
coverage improvement (Col. 7) as the difference between the
branch coverage of CoverMe and that of Austin. We observe
that CoverMe provides 3,868X speed-up and 48.9% coverage
improvement on average.

Remark 6.3. Three reasons contribute to CoverMe’s effec-
tiveness. First, Thm. 4.3 (namely, each minimum point found
in the minimization process corresponds to a new branch until
all branches are saturated) allows CoverMe’s search process
to target the right test inputs only. Most random techniques
do not have such guarantee, so they can waste time searching
for irrelevant test inputs. Second, SMT-based methods run
into difficulties in certain kinds of programs, e.g., those with
nonlinear arithmetic. It makes sense to use unconstrained
programming in programs that are heavy on floating-point
computation, in part because we have designed the repre-
senting function of CoverMe to be smooth to some degree,
e.g., the branch distances defined in Def. 4.1 are quadratic
expressions; the smoothness allows CoverMe to leverage the
power of local optimization and MCMC. Third, CoverMe
only has to minimize a single representing function, whereas
symbolic execution usually needs to solve a large number of
path conditions.

Since CoverMe has achieved high code coverage on most
tested programs, one may wonder whether our generated
inputs have triggered any latent bugs. Note that when no
specifications are given, program crashes have frequently
been used as an oracle for finding bugs in integer programs.
Floating-point programs, on the other hand, can silently
produce wrong results without crashing. Thus, when testing
floating-point programs, program crashes cannot be used as
a simple, readily available oracle as for integer programs.
Our experiments, therefore, have focused on assessing the
effectiveness of CoverMe in solving the problem defined in
Def. 3.1 and do not evaluate its effectiveness in finding bugs,
which is orthogonal and exciting future work.

7. Related Work
Many survey papers [31, 40, 43] have reviewed the algo-
rithms and implementations for coverage-based testing.

Random Testing The most generic automated testing solu-
tion may be to sample from the input space randomly. Pure
random testing is usually ineffective if the input space is large,
such as in the case of testing floating-point programs. AFL [1]
is an improved random testing approach that incorporates a
set of heuristics. It starts from a random seed and repeatedly
mutates it to attain more program coverage.

Symbolic Execution Most branch coverage based testing
algorithms follow the pattern of symbolic execution [24]. It
selects a target path t , derives a path condition Ft , and calcu-
lates a model of the path condition with an SMT solver. The
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Table 3: CoverMe versus Austin. The benchmark programs are taken from the Fdlibm library [6]. The “timeout” refers to a time of more than
30000 seconds. The “crash” refers to a fatal exception when running Austin.

Benchmark Time (second) Branch coverage(%) Improvement
Program Entry function Austin CoverMe Austin CoverMe Speedup Coverage (%)

e_acos.c ieee754_acos(double) 6058.8 7.8 16.7 100.0 776.4 83.3

e_acosh.c ieee754_acosh(double) 2016.4 2.3 40.0 90.0 887.5 50.0

e_asin.c ieee754_asin(double) 6935.6 8.0 14.3 92.9 867.0 78.6

e_atan2.c ieee754_atan2(double, double) 14456.0 17.4 34.1 63.6 831.2 29.6

e_atanh.c ieee754_atanh(double) 4033.8 8.1 8.3 91.7 495.4 83.3

e_cosh.c ieee754_cosh(double) 27334.5 8.2 37.5 93.8 3327.7 56.3

e_exp.c ieee754_exp(double) 2952.1 8.4 75.0 96.7 349.7 21.7

e_fmod.c ieee754_frmod(double, double) timeout 22.1 n/a 70.0 n/a n/a

e_hypot.c ieee754_hypot(double, double) 5456.8 15.6 36.4 90.9 350.9 54.6

e_j0.c ieee754_j0(double) 6973.0 9.0 33.3 94.4 776.5 61.1

ieee754_y0(double) 5838.3 0.7 56.3 100.0 8243.5 43.8

e_j1.c ieee754_j1(double) 4131.6 10.2 50.0 93.8 403.9 43.8

ieee754_y1(double) 5701.7 0.7 56.3 100.0 8411.0 43.8

e_log.c ieee754_log(double) 5109.0 3.4 59.1 90.9 1481.9 31.8

e_log10.c ieee754_log10(double) 1175.5 1.1 62.5 87.5 1061.3 25.0

e_pow.c ieee754_pow(double, double) timeout 18.8 n/a 81.6 n/a n/a

e_rem_pio2.c ieee754_rem_pio2(double, double*) timeout 1.1 n/a 93.3 n/a n/a

e_remainder.c ieee754_remainder(double, double) 4629.0 2.2 45.5 100.0 2146.5 54.6

e_scalb.c ieee754_scalb(double, double) 1989.8 8.5 57.1 92.9 233.8 35.7

e_sinh.c ieee754_sinh(double) 5534.8 0.6 35.0 95.0 9695.9 60.0

e_sqrt.c iddd754_sqrt(double) crash 15.6 n/a 82.6 n/a n/a

k_cos.c kernel_cos(double, double) 1885.1 15.4 37.5 87.5 122.6 50.0

s_asinh.c asinh(double) 2439.1 8.4 41.7 91.7 290.8 50.0

s_atan.c atan(double) 7584.7 8.5 26.9 88.5 890.6 61.6

s_cbrt.c cbrt(double) 3583.4 0.4 50.0 83.3 9109.4 33.3

s_ceil.c ceil(double) 7166.3 8.8 36.7 83.3 812.3 46.7

s_cos.c cos (double) 669.4 0.4 75.0 100.0 1601.6 25.0

s_erf.c erf(double) 28419.8 9.0 30.0 100.0 3166.8 70.0

erfc(double) 6611.8 0.1 25.0 100.0 62020.9 75.0

s_expm1.c expm1(double) timeout 1.1 n/a 97.6 n/a n/a

s_floor.c floor(double) 7620.6 10.1 36.7 83.3 757.8 46.7

s_ilogb.c ilogb(double) 3654.7 8.3 16.7 75.0 438.7 58.3

s_log1p.c log1p(double) 11913.7 9.9 61.1 88.9 1205.7 27.8

s_logb.c logb(double) 1064.4 0.3 50.0 83.3 3131.8 33.3

s_modf.c modf(double, double*) 1795.1 3.5 50.0 100.0 507.0 50.0

s_nextafter.c nextafter(double, double) 7777.3 17.5 50.0 79.6 445.4 29.6

s_rint.c rint(double) 5355.8 3.0 35.0 90.0 1808.3 55.0

s_sin.c sin (double) 667.1 0.3 75.0 100.0 1951.4 25.0

s_tan.c tan(double) 704.2 0.3 50.0 100.0 2701.9 50.0

s_tanh.c tanh(double) 2805.5 0.7 33.3 100.0 4075.0 66.7
MEAN 6058.4 6.9 42.8 90.8 3868.0 48.9
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Figure 6: Symbolic execution methods versus CoverMe.

symbolic execution approach is attractive because of its theo-
retical guarantee, that is, each model of the path condition Ft
necessarily exercises its associated target path t . In practice,
however, symbolic execution can be ineffective if there are
too many target paths (a.k.a. path explosion), or if the SMT
backend has difficulties in handling the path condition. When
analyzing floating-point programs, symbolic execution and
its DSE (Dynamic Symbolic Execution) variants [15, 41]
typically reduce floating-point SMT solving to Boolean sat-
isfiability solving [36], or approximate the constraints over
floats by those over rationals [28] or reals [13].

Fig. 6 illustrates a comparison between symbolic execu-
tion methods and CoverMe. While symbolic execution solves
a path condition Ft with an SMT-based backend for each
target path t , CoverMe minimizes a single representing func-
tion FOO_R with execution-based unconstrained programming.
Therefore, CoverMe does not have path explosion issues, and
in addition, it does not need to analyze program semantics.
Similar to symbolic execution, CoverMe also comes with
a theoretical guarantee, namely, each minimum attaining 0
necessarily trigger a new branch, a guarantee that contributes
to its effectiveness (Sect. 6).

Search-based Testing Miller et al. [32] reduce the prob-
lem of testing straight-line floating-point programs into con-
strained programming [44], that is, optimization problems
in which one needs to both minimize an objective function
and satisfy a set of constraints. Korel [21, 25] extends Miller
et al.’s to general programs, leading to the development of
search-based testing [31]. It views a testing problem as a
sequence of subgoals where each subgoal is associated with
a fitness function; the search process is then guided by mini-
mizing those fitness functions.

CoverMe’s representing function is similar to the fitness
function of search-based testing in the sense that both reduce
testing into function minimization. However, CoverMe uses
the more efficient unconstrained programming rather than
the constrained programming used in search-based testing.
Moreover, CoverMe’s use of representing function comes up
with a theoretical guarantee, which also opens the door to a
whole suite of optimization backends.

8. Conclusion
We have introduced a new branch coverage based testing
algorithm for floating-point code. We turn the challenge
of testing floating-point programs into the opportunity of
applying unconstrained programming. Our core insight is to
introduce the representing function so that Thm. 4.3 holds,
which guarantees that the minimum point of the representing
function is an input that exercises a new branch of the tested
program. We have implemented this approach into the tool
CoverMe. Our evaluation on Sun’s math library Fdlibm
shows that CoverMe is highly effective, achieving 90.8%
of branch coverage in 6.9 seconds on average, which largely
outperforms random testing, AFL, and Austin.

For future work, we plan to investigate the potential
synergies between CoverMe and symbolic execution, and
extend this work to programs beyond floating-point code.
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