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ABSTRACT
A dependency bug is a software fault that manifests itself when
accessing an unavailable asset. Dependency bugs are pervasive and
we all hate them. This paper presents a case study of dependency
bugs in the Robot Operating System (ROS), applying mixed meth-
ods: a qualitative investigation of 78 dependency bug reports, a
quantitative analysis of 1354 ROS bug reports against 19553 reports
in the top 30 GitHub projects, and a design of three dependency
linters evaluated on 406 ROS packages.

The paper presents a definition and a taxonomy of dependency
bugs extracted from data. It describes multiple facets of these bugs
and estimates that as many as 15% (!) of all reported bugs are depen-
dency bugs. We show that lightweight tools can find dependency
bugs efficiently, although it is challenging to decide which tools to
build and difficult to build general tools. We present the research
problem to the community, and posit that it should be feasible to
eradicate it from software development practice.
ACM Reference Format:
Anders Fischer-Nielsen, Zhoulai Fu, Ting Su, and Andrzej Wąsowski. . The
Forgotten Case of the Dependency Bugs: On the Example of the Robot
Operating System. In . ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION
For years, research on bug finding and fixing has prioritized rare, but
intricate, bugs that are hard to avoid for programmers. This includes
memory management bugs (leaks, use-after-free, null pointer deref-
erences, buffer overruns), concurrency (deadlocks, live-locks, and
data races), typing (wrong casts, wrongly composed expressions),
data flow (uninitialized variables), floating point errors (overflows,
underflows), etc. Here, we investigate another category of bugs,
whichmight not be considered worthy by some, but can be more fre-
quent than expected: the dependency bugs. These bugs encompass
a large group of structural problems manifested by an asset (such
as a data file, a code module, a library or an executable file) being
unavailable when needed, at compile-time, test-time, initialization-
time, run-time, or deployment-time.

Dependency bugs appear because of modular construction of
software, use of multiple languages, and independent evolution
of components and languages. Dependency bugs are particularly
painful for programmers new to a project. They often lack intricate,
but otherwise common, knowledge to avoid them, and struggle to
fix them, which shows in many online posts and discussions about
simple dependency errors. Senior developers in large projects also

,
,
.
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(b) Specification of packaging (manifest)

Figure 1: A dependency bug in ROS Universal Robot driver

suffer from dependency bugs. For them the size and the independent
evolution of multiple parts of a system appear to be a reason for
mis-specifying dependencies.

In this paper, we study dependency problems in Robot Operating
System (ROS).1 ROS is a platform for building robotics systems,
using multiple languages, a custom advanced build system (based
on CMake), and its own package management system. Figure 1
presents an example of a past dependency bug2 extracted from
the history of ROS, more precisely of an open source driver for
a popular family of robot arms by Universal Robots. The fault
lies in inconsistency of specification of dependencies between the
build script and the packaging manifest for a module. The green
elements are missing in the original code, and have been added in
the bug-fixing patch. The top diagram, Fig. 1a, shows a fragment of a
CMake build script that depends on the boost library for compilation
(include directories) and linking (target link libraries). The bottom
Fig. 1b shows a fragment of the manifest, a so called package.xml,
1http://www.ros.org
2Issue: https://github.com/ros-industrial/universal_robot/issues/113, fixing commit:
https://github.com/fmessmer/universal_robot/commit/e50a44, ROBUST entry: https:
//github.com/robust-rosin/robust/blob/master/universal_robot/040fd11/040fd11.bug

http://www.ros.org
https://github.com/ros-industrial/universal_robot/issues/113
https://github.com/fmessmer/universal_robot/commit/e50a44
https://github.com/robust-rosin/robust/blob/master/universal_robot/040fd11/040fd11.bug
https://github.com/robust-rosin/robust/blob/master/universal_robot/040fd11/040fd11.bug
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that defines how the software interacts with the package manager.
A package.xml manifest defines both what code assets need to
be installed to compile, link, test, and package the code, and what
dependencies must be available at runtime on user’s platform. As
shown in the figure, while the build script (top) depends on the
boost library, the runtime part of the manifest does not require
that this library is available at runtime. This may cause compilation
errors for the user (boost header files missing) or crashes at dynamic
linking time (for second level users who installed the binaries only);
situations especially confusing for newcomers to ROS and C++.

Furthermore, the manifest (Fig. 1b) includes specification of ex-
ported libraries for two sizes of robot arms, ur5 and ur10. These
are also built in the CMakeLists.txt script above, but they are not
installed. Even though package.xml exports them to users, they
will not be included in the binary package, and will cause failures of
compilation or dynamic linking in dependent packages. This issue
has been fixed by adding two new install targets to the build script
(ur5_moveit_plugin and ur10_moveit_plugin, green in the figure).

The above example is fairly representative among dependency
bugs in ROS. It is reasonably simple to debug and fix for a program-
mer who navigates the project infrastructure well. At the same
time, it appears convoluted and complicated to others, especially
relative to the conceptual simplicity of the problem (missing files).

Since 2017, we have worked on a participatory action research
project, ROSIN, with the ROS community.3 Within ROSIN, approx-
imately 200 historical bugs in ROS have been collected and ana-
lyzed.4 We were surprised by the challenges that dependency bugs
pose in daily work. It was perplexing to see that 10% of the surveyed
bugs were dependency bugs [24] (weakly representative sampling).
We realized that dependency bugs may be a significant produc-
tivity problem, and a detractor for potential community members.
We decided to investigate the issue closer, in a dedicated set of
experiments, asking the following research questions (RQ):

RQ1.What are dependency bugs? What kinds exist?
RQ2. How pervasive and difficult to handle are dependency bugs?
RQ3. Can lightweight strategies help finding dependency bugs?

We explored these questions in a mixed methods case study in ROS.
We analyzed 78 dependency bugs in ROS qualitatively to derive a
definition of dependency bugs and a taxonomy of their kinds. We
used quantitative approximation of the problem, to estimate how
common it is among 406 ROS packages, 1354 ROS bug reports, and
19553 bug reports in 30 top GitHub projects. Finally, we prototyped
three dependency linters, to experience the challenges these bugs
present to builders of bug checkers. We found that:

• Most common problems are missing build-time and run-time
dependencies. More complex cases include dependencies
not correctly exported (like above) or circular, spurious de-
pendences causing package conflicts, and dependency links
being wrongly calculated. Sometimes, bugs appear even if
neither the dependant and the depending party has changed,
instigated by changes in the package distribution, the oper-
ating system, or the programming language.

3https://rosin-project.eu/
4The data is not finalized yet, but the process of collecting it, including the current
snapshot is publicly available at: https://github.com/robust-rosin/robust

• Dependency bugs are frequent: they appear with similar fre-
quency in ROS and in top 30 GitHub projects (ca. 15% of all
issue reports), they can be found in about 53% of ROS projects,
and ca. 30% of contributors are involved in discussing them.

• Dependency linters can be build using little code (in the or-
der of 100 lines) for specific cases. It is difficult though to
build reusable dependency tools as most bugs are idiosyn-
cratic to the platform. Also, it is hard to understand which
dependency bugs are likely in a project (without an extensive
analysis), which hampers prioritizing particular linters.

We hope that the results presented in this paper will get the atten-
tion of the community, and help to realize that dependency bugs are
a significant problem and annoyance, and that they cannot be elim-
inated solely by continued program analysis research that tends to
be enclosed in the universe of a single programming language silo.
These problems are sufficiently annoying to warrant eradicating
them, and sufficiently simple to give us hope that this is feasible.

2 ROBOT OPERATING SYSTEM
ROS is the most popular open-source platform for robotics. It
provides standard communication and coordination features (dis-
tributed middleware), along with essential robotics-specific compo-
nents, such as drivers for popular hardware andmodules for control,
perception, localization, etc. A ROS-based application is created by
selecting and configuring the necessary components, and comple-
menting them with application specific code, typically in Python or
C++ [19]. ROS is widely used in teaching and research. For example,
MoveIt!, a planner for ROS, has been used to control more than
65 kinds of robots [3]. Recently ROS attracts increasing industrial
interest. The ROS-Industrial consortium counts over 70 members.

ROS has its own CMake-based build system (catkin for ROS1,
ament for ROS2) and its own package manager (rosdep) that in-
terfaces to the underlying platform (chiefly via apt-get and pip) to
construct the build-time and runtime environment for ROS pack-
ages. A deployment configuration mechanism, roslaunch, interprets
ROS-specific startup scripts that define which nodes to start, how
they should communicate, and what parameters values to set. With
this design ROS projects are highly modularized, and ROS program-
mers use many languages, starting from C++, through python, to
several DSLs (package.xml, launch scripts, robot definition mod-
els, message definitions, etc.). ROS packages are distributed in col-
lections known as distributions, temporally aligned with Ubuntu
distributions. (Ubuntu Linux is the main platform underlying ROS.)

3 RQ1: DEPENDENCY BUGS
We present the exploratory qualitative inquiry into dependency
bugs. The objective is to characterize and define dependency bugs.

3.1 Method
We worked in two modes alternately: (i) an analytical mode (Sec-
tion 3.2), where we analyzed and categorized dependency bugs;
and (ii) a synthesis mode (Section 3.3), where we evolved the defini-
tion from analyzed cases. Our data include pull requests and issue

https://rosin-project.eu/
https://github.com/robust-rosin/robust
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Description # Location Dependency Fault Failure Stage

1 Build-time dependency missing 33 missing build
2 in build script 8 build script missing build
3 in manifest 18 manifest missing build
4 missing linker dependency (build not linking against the required library) 2 build script missing build
5 build-tool dependency missing 5 manifest missing build
6 Run-time dependency missing 23
7 runtime dependency specification missing in the package manifest 23 manifest missing run
8 Test- time dependency missing 1 manifest missing test
9 Wrong build-time dependency 13 build
10 linking against multiple versions of the same library 4 build script inconsistent build
11 dependency on wrong programming language version (compiler option) 1 build script wrong build
12 build-time dependency not passed down to dependent packages 7 build script not exported build
13 build-time dependency is unconditional, but should be conditional 1 build script wrong build
14 Spurious (unused or otherwise not needed) dependency 12
15 in build script 6 build script spurious build
16 in manifest 6 manifest spurious build/run/test
17 Circular dependency (in various dependency graphs) 1 various circular (wrong) build
18 File path problems at various phases 8
19 wrong file path computation in dependencies 4 build script/manifest wrong build/run/test
20 wrong location for compiled artifacts 1 build script wrong build
21 wrong executable name in a launch (start) script 2 launch script wrong launch/test
22 wrong location for install files 1 build script wrong installation
23 Operating system/platform/distribution issues 7
24 wrong operating system version 2 other wrong build/run/test
25 cross platform incompatibility between resources 2 build script/manifest/code missing build/run/test
26 dependency not released 3 manifest missing installation
27 Source code issues
28 wrong module import in source code 2 code wrong build/run
29 Meta-dependency problems (NOT dependency problems) 7 dep. mgmt. mechanism – build/run/test

Table 1: Classification of dependency bugs in ROS Melodic (some issues contain more than one bug, so # does not sum to 78)

reports collected from 455 packages in the ROS Melodic Morenia
distribution.5 We performed four iterations:
(1) We picked nine issue candidates of GitHub issues from three

popular ROS repositories: catkin, py_trees, and turtlebot3. Each
issue contains the word ‘dependency’ or ‘dependencies.’ We an-
alyzed, discussed, and labeled the candidates that we believed
to be dependency bugs, based on the common informal un-
derstanding what is a dependency bug (like in Section 1). We
captured a short rationale for each classification decision (the
analysis mode). This discussion led to the first formulation of a
definition of a dependency bug (the synthesis mode).

(2) We searched for another 20 issue tracker entries with the sub-
string ‘depend.’ We discussed them in a joint meeting (the anal-
ysis mode), finding that the keyword search worked reasonably
well for the purpose of qualitative analysis. Then, we refined
the definition (the synthesis mode) and automated the search
process with a script. The script checked for presence of the
substring ‘depend’ (shortened to cover lexical variations) in the
title, body, and all discussion comments of an issue tracker en-
try. The script identified an issue as a bug if developers tagged
the issue with any label containing the term ‘bug’, for example
‘bug’, ‘type: bug’ or ‘todo: bug.’ We were inspired by Vasilescu
and coauthors to use this approximation entries representing
bug reports and bug fixes [25]. At the point of the experiment
the distribution included 455 repositories, out of which 118 had
at least one issue tracker entry tagged as a bug.

5https://github.com/ros/rosdistro/tree/master/melodic, captured on 2019/06/22

(3) Using the script, we collected new 100 GitHub issues, 50 includ-
ing ‘depend’ and 50 not including. We used GHTorrent [9] to
obtain these data. We randomly distributed them to the paper
authors, withholding the script labeling from them. Each au-
thor labeled the issues manually, capturing a short rationale.
We discussed all nontrivial cases in a joint meeting, including
the dependency bugs that tested negatively for the keyword
inclusion, and non-dependency bugs that tested positive for
‘depend’ (the analysis mode). We proposed a refined definition
as the result of this iteration (the synthesis mode).

(4) Finally, we used the script again to gather all the remaining 95
bugs in the ROS Melodic distribution that tested positive for
inclusion of ‘depend’ and ‘bug’. We classified them manually,
flagging interesting cases and discussing them (analysis). At
this stage, no change to the main definition was necessary, thus
we concluded saturation (synthesis).

In total, we manually classified 224 issue tracker entries and labeled
78 of them as dependency bugs. (The distribution contained 25596
issues and pull requests, where 1354 were tagged ‘bug’.) We used a
three valued classification, asking: Is this a dependency bug? With
possible answers: Yes, No, and Invalid. The latter was used for en-
tries that contained insufficient amount of information to conclude,
and for the few entries incorrectly tagged ‘bug’ by developers. The
main outcome of this process is the definition of a dependency bugs
presented in Section 3.3. For simplicity, we only show the final ver-
sion of the definition. To reflect the process, Section 3.2 presents the

https://github.com/ros/rosdistro/tree/master/melodic
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various kinds of dependency bugs that we have seen in ROS, demon-
strating how rich this space is, and giving rise to the first known
taxonomy of dependency bugs extracted from a real system data.

3.2 Analysis: The Space of Dependency Bugs
To understand the space of dependency bugs we have manually
coded the bugs by the nature of the failure and the fault. We ar-
rived at 21 codes for dependency bugs, and one not representing a
dependency bug but a related issue. The codes have been manually
clustered into ten exclusive groups by conceptual proximity. We
describe the spectrum of dependency problems in ROS using these
groups. For each group we link to an example, so that the reader
can confront our observations with the source material on GitHub.

Table 1 summarizes our sample of bugs, organized by codes. It
lists the groups, followed by number of occurrences in the sample,
the location of the fault and the manifestation of the failure. The
few gray entries represent variants that we believe are possible
and reasonably likely, but have not been found in the sample. The
reader is invited to refer to the table throughout the discussion.

Build-time dependency missing.6

Fault The problems in this group are caused by missing depen-
dency declarations in either a package manifest or a build script.
The missing dependencies may refer to other source packages, bi-
nary libraries, and additional tools used in the build process. Most
often, the code necessary for building is not installed pre-build time.
Sometimes, the pre-requisites are installed but the build script does
not make them visible for the build process (for instance not putting
them in the right location, or in the correct environment variable).
The fault may also be located in the source code: for instance the
build script correctly declares no dependency, but the program uses
a component needlessly, or against guidelines. In such case, the
bug is fixed by removing offending code, instead of adding the
dependency. This happens relatively rarely though.
Failure Bugs in this group result in a build process failure, either
during the preparation time, compilation (missing headers), or link-
ing (unresolved symbols). These problems are detected statically
by tools, but the results are brittle, dependent on the configuration
of the machine on which the check is made. Some survive checks
even in the pristine environment of continuous integration (CI).

Observation 1. Despite that tools find build bugs automatically
and effectively, these bugs have not disappeared from committed
code. Missing build-time dependencies are the most frequently
reported, discussed, and fixed group of dependency bugs in ROS.

We might be seeing so many of these exactly because static depen-
dency checking is successful. Build tools and package managers
check for these errors, to prevent others, like runtime problems.

Runtime dependency missing 6.
Fault A missing runtime dependency is a bug in a package man-
ifest. When a runtime dependency is missing, the binary package
built from the manifest is not announcing a required prerequisite.
The prerequisite will not be available when the package is used.

6Example: https://github.com/ros-drivers/openni_camera/issues/21, both a runtime
and build-time dependency problem. Note that the bug in Fig. 1 is also a missing
runtime dependency problem (the boost library is not listed)

Failure These bugs result in failures at runtime, typically at startup
time (missing dynamically linked libraries, helper scripts, and tools),
but sometimes later (for instance if a dependency is only rarely ac-
cessed in Python, which does not require linking at load time). Both
with build-time and runtime dependencies missing, the original
developer would often miss the problem, because the prerequisites
are installed in his work environment for other reasons.

Missing runtime dependencies in ROS occur almost always to-
gether with a missing build dependency in a manifest file and in a
build script. This appears to be a reflection of code-oriented work
flow of developers, where an asset is first used in the code, and then
specified as a dependency. This last step is forgotten because the
dependency is already installed on the developer’s machine.

Observation 2. Redundancy of dependency specifications is con-
tributing to introducing dependency bugs, or even causing them.
Similar dependency information needs to be specified both in the
build script, in the package manifest, and in the source code.

Dependencies play slightly different roles in these places, and there
exist use cases, where these three are not identical on purpose,
or when not all three are used. Possibly though, some of the re-
dundancy is caused by the fact that the various tools dealing with
dependencies are developed independently, by different projects.
Reducing or elmiinating redundancy of specifications would require
further design work and collaboration between various tools.

Test-time dependency missing.7

Fault Modern build systems and package management systems
(including catking and rosdep) distinguish runtime dependencies
from test dependencies. The former are meant to be imposed on all
users of the software, the latter only on developers and CI.
Failure A missing test dependency usually results in the tests
crashing (e.g. due to failure of dynamic linking), throwing excep-
tions (missing python packages), or otherwise terminating.

Wrong build-time dependency.8

Fault This more subtle category concerns bugs where build depen-
dencies are specified, but they are flawed. The most common flaw in
ROS is that dependencies are not exported during construction of a
binary package (post-build installation). We also observed problems
like linking different parts of a system with different versions of the
same binary library, depending on a wrong version of programming
language (in ROS these is either using wrong version of Python, or
C++, both with non-trivial differences between versions), and using
an unconditional dependency, where a conditional should be used.
Failure Since broken dependencies have many natures, they can
have various consequences. Most commonly though, they cause a
missing build dependency in another package. If a build script does
not export a dependency to the binary package, then it will not be
installed by dependent packages. Programmers building against
such binary package will experience missing header files, etc.

7Example: https://github.com/ros/ros/pull/181
8Example: https://github.com/ros/geometry/issues/21. Note that the example of Fig. 1
is also a case of a wrong build-time dependency, where the plugins are exported but
not installed post-build.

https://github.com/ros-drivers/openni_camera/issues/21
https://github.com/ros/ros/pull/181
https://github.com/ros/geometry/issues/21
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Observation 3. As dependencies are a phenomenon relating two
ends, the dependency and the dependant, they often cause problems
on both sides. This makes detecting dependency bugs cumbersome
(requires cross-package work), but also raises opportunities to more
precise diagnosis and repair. Information coming from the other
end of the dependency may help to disambiguate problems.

Spurious dependency.9

Fault Spurious dependencies are dependencies on assets that are
not used in the source code, do not exist, or can be forced to exist
in other ways, without explicit specification. They appear when
functionality is removed, when packages are merged or otherwise
refactored, when dependencies are exported from another package
or hard-coded tool in the management system.
Failure Some spurious dependencies tend to be just bad smells—
they make installation harder for users (more prerequisites to sat-
isfy) and needlessly increase chances of name and library–version
conflicts. Yet, they do not cause immediate failures. Others create
problems immediately; For instance, if a dependency has been re-
moved from a distribution, it cannot be installed and the build fails.

Circular dependency.10

Fault Most dependency management systems require that the
global dependency graph is acyclic. Occasionally it happens that
this constraint is violated by developers.
Failure In such case, the users of the dependency management
mechanism experience amechanism failure at the time of attempted
installation or build (a dependency check). The system is usually un-
able to point out the offending component, as the cycle is inherently
a global issue. Unless caused by simple mistakes, these problems
may require rearchitecting the offending part of the system.

File path problems.11

Fault Many assets on which ROS packages depend are stored in
files. Dependencies are often broken because the paths of the files
are wrong. This can be cause by a mistake in a computation (if
the path is computed), by artifacts being located in a wrong place
(while the path is correct), and by names being misspelled.
Failure File path problems manifest themselves by failures in all
stages of dependency management: at build, packaging, installation,
and run-time, depending on the role of the referenced artifact.

Operating system/platform/distribution issues.12

Fault Several dependency issues in the sample have been caused
by developers not testing code on all used platforms, a common
challenge for cross-platform systems. Here, we include also prob-
lems when distributions and programming languages do not offer
the same set of packages as used by the developer, mostly because
binary distributions are behind the source repositories.
Failure Most OS- and platform-induced dependency problems
manifest similarly to missing dependency specifications. Typically
a component is either not available for the given platform, or not
yet released, resulting in a failure of build or installation.

9Example: https://github.com/jsk-ros-pkg/jsk_recognition/issues/2087
10Example: https://github.com/ros-simulation/gazebo_ros_pkgs/issues/24
11Example: https://github.com/ros-drivers/joystick_drivers/issues/30
12Example: https://github.com/splintered-reality/py_trees/issues/83

Observation 4. The issues with dependency specifications chang-
ing at various speed in databases, and operating systems differing
with what dependencies they can satisfy, demonstrate particularly
clearly that dependency problem detection is not a standard pro-
gram analysis problem. In here, the primary challenge for bug
prevention tools is not the complexity and decidability of the anal-
ysis algorithm, but access to all required dependency information,
possibly across platforms and temporal shifts. The challenge is fur-
ther exacerbated by the fact that the various parts of the ecosystem
are under control of various persons, and it is not always clear on
which side the issue should be fixed.

Source code issues.
Fault Not all dependency issues are placed in dependency specifi-
cations (manifest files and build scripts). Programming languages
have dependency management mechanisms as well, mostly via
import statements for packages and name spaces. Especially in
dynamically linked (C++) and dynamic (Python) languages these
interact with dependency specifications—imported packages must
be provided, usually via the outer dependency mechanism. These
bugs are like missing dependency bugs, but the offending side is the
code in programming language not the manifest files and scripts.
Failure For all these errors, the symptoms are the same as for
wrong and missing dependency bugs. The difference is in cause.

Programming language dependency bugs are typically detected
by name analysis, type system, or a linker. So why do they exist in
committed code? The language infrastructure can only check these
bugs in a particular build environment (the developer’s machine).

Observation 5. The programming language tools lack informa-
tion about how the build environment has been constructed, and
they are unable to assess, whether the build or launch of the package
on another machine will also succeed without errors.

Meta-dependency problems.13

Fault A related class of bugs are faults and shortcomings in the de-
pendency management software itself, so bugs in build systems and
package managers. These bugs are classic software bugs, unrelated
to dependencies, that occur in the logics resolving dependencies.
We call them meta-dependency bugs. They are usually not depen-
dency bugs per sé. They require very different methods to detect
them and correct (in particular, they usually cannot be detected by
the dependency mechanism used by the dependency software).
Failure These bugs are deceivingly similar to dependency bugs,
as they can easily result in builds and installations failing and in
dependencies not being found in some concrete packages using
the build system, compiler, linker, or package manager. This can be
very confusing for users, as they would typically suspect that the
fault lies with their dependency specification and not with the tool.

3.3 Synthesis: Definition of Dependency Bugs
The reader who followed the example links in the previous section
will appreciate how much accidental complexity dependency bugs
present. One objective for this work is to synthesize a catalog de-
scribing the space of these bugs (above) and a common definition.
13Example: https://github.com/ros/catkin/issues/867

https://github.com/jsk-ros-pkg/jsk_recognition/issues/2087
https://github.com/ros-simulation/gazebo_ros_pkgs/issues/24
https://github.com/ros-drivers/joystick_drivers/issues/30
https://github.com/splintered-reality/py_trees/issues/83
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We believe that elucidating the problem is the first step in finding a
good solution. We have analyzed the data set described above and
proposed a definition of dependency bugs:

Definition 3.1. A dependency bug is a software fault that both
(1) Manifests itself when accessing a software asset that is unavail-

able (either because it does not exist, is located elsewhere than
anticipated, or it is broken)

(2) Can be fixed by modifying configuration specification or code
to adjust (change, insert, remove) asset names and references.

An asset should be understood broadly as anything that can be ref-
erenced, and is provided externally. It could be a software package,
a module, a class, but also a script, an external tool, a library, an
operating system, a database, a service, a file, or a specification of
dependencies itself. A configuration specification could be a pack-
age manifest, a build script, a distribution index, a helper script,
or a file defining options and deployment. The dependency bugs
manifest themselves in any life cycle phase of a system, including
the pre-build installation (constructing the workspace), build-time
(compilation and linking), test, static analysis, installation, deploy-
ment and packaging (post-build installation), and at runtime.

4 RQ2: DEPENDENCY BUGS CHALLENGE
We now attempt to estimate how common and how burdensome
dependency bugs are. We proceed through a series of small quanti-
tative experiments (mostly) in the ROS ecosystem.

4.1 Pervasiveness of Dependency Bugs
Frequency of Dependency Bugs. We want to understand how fre-
quently dependency bugs appear. We will exploit the material col-
lected in the Iteration 3 (Section 3.1). We want to compute the
fraction of dependency bugs within the entire bug population. We
will approximate the bug and dependency bugs populations using
our simple classifier script from Section 3.1, checking for substrings
’bug’ and ’depend’ respectively. This classifier is obviously very
imprecise, so we first need to estimate its precision.

In the third iteration, we have collected and labeled 50 random
issues positively classified by the script. This allows to estimate
the probability of a correct classification if the classifier detects a
dependency bug (precision). We have removed nine invalid entries
out of the 50 during manual labeling (22 + 19 = 41 < 50):

Pr(dep-bug | positively-classified) =
Pr(dep-bug ∩ positively-classified)

Pr(positively-classified)
=

22
22 + 19

≈ 54%

The same probability for 4th iteration data is ≈ 49% (95 cases pos-
itively classified cases, minus 8 removed as invalid), which shows
a reasonable stability. The probability of negative classification
(NB. not recall, but the precision of the negative classification) is
estimated based on the other half of the dataset in the third iteration:

Pr(¬dep-bug | negatively-classified) =
Pr(¬dep-bug ∩ negatively-classified)

Pr(negatively-classified)
=

38
38 + 5

≈ 88%

Here 7 cases have been removed as invalid in the manual labeling.

In conclusion, we can use the simple classifier script to estimate
the number of dependency bugs, if we discount positive results by
54%, and include 12% of the negative results.

The space of bug kinds is diverse and large. Any particular kind is
bound to appear rather rarely in a random population of bugs. Mea-
suring bug frequencies might be misleading, if we disregard other
factors such as workload involved in removing, or potential conse-
quences of not removing them. The point of this exercise is not to
show that bugs happen rarely, but that they do happen, and they are
not a singleton phenomena, but they are repeatable with regularity.

Table 2 collects the frequency statistics. According to the estima-
tion about 16% of all reported issues in ROS are dependency issues.
We contrasted this number with the frequency established using the
same method for top 30 GitHub projects, chosen by the number of
stars. As we can see this yields almost identical estimated frequency
of dependency problems. The most ‘dependency positive’ project
in this population is Kubernetes, exhibiting 343 positively classified
issues, with 15% of all issues estimated to be dependency bugs.

Observation 6. Dependency bugs in ROS (and in top 30 GitHub
projects) appear at a noticeable frequency. Estimated 15% of all
discussed issues and pull requests deal with dependency problems.

To provide some context, we have adapted the classifier to find
concurrency issues (by matching substrings ‘concurren’, ‘paral-
lel’, ‘deadlock’, ‘race’, ‘lock’) and memory management issues (sub-
strings ‘leak’, ‘null dereference’, ‘buffer’, ‘overflow’). Since we do
not have the manual precision labeling for these bugs, we compare
the intensity of discussions on these topics, not the predicted bug
frequency (using the classifier directly, without the precision cor-
rection). Table 3 summarizes these statistics. Without the precision
correction, these data are to be interpreted with much caution. Still,
we can clearly see that the mentions of memory specific terms, or
concurrency specific terms in bug discussions are similar.

Observation 7. It appears that dependency bugs are not less
visible in software projects than other ‘established’ kinds of bugs.

How Widespread Are Dependency Bugs? To investigate this we es-
timate how many projects and how many developers are affected
by dependency problems. First, for each of the 118 projects in ROS
Melodic that contain an issue tagged ’bug’ we manually check
whether at least one of these issues is a dependency bug. Second,

Table 2: Dependency bugs in ROS and GitHub projects

Issue Tracker Positive Labeled bug
est. dep-bugs
(+54%,+12%) Freq.

ROS Melodic 118 repositories 152 1354 226.32 16%
Top 30 GitHub projects 1018 19553 2773.92 14%
Kubernetes 343 5029 747.54 15%

Table 3: Dependency vs memory and concurrency issues

Issue Tracker Positive Labeled bug Fraction

ROS Melodic 118 repositories (dependency) 152 1354 11%
ROS Melodic 118 repositories (concurrency) 235 1354 17%
ROS Melodic 118 repositories (memory) 74 1354 5%
Top 30 GitHub projects (dependency) 1018 19553 5%
Top 30 GitHub projects (concurrency) 3115 19553 16%
Top 30 GitHub projects (memory) 2669 19553 14%
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Figure 2: Bayesian analysis of discussion lengths. Left: dif-
ferences between posterior discussion termination rates for
the two groups; Right: posterior difference between length
of discussions in the two groups

we check what fraction of developers involved in ‘bug’ issue dis-
cussion in ROS projects were also involved in the dependency bugs
discussions as indicated by our simple classifier.

Observation 8. As many as 53% of packages and 30% of contrib-
utors involved in reporting or removing bugs in ROS are affected
by dependency problems, so these problems are widespread.

In an average ROS package (with an issue tagged ’bug’), 30% contrib-
utors participate in discussions about dependency bugs (out of con-
tributors discussing bugs at all). This fraction raises to 60% for pack-
ages where at least one dependency bug was discussed (so removing
zeroes), showing that these bugs tend to attract discussion and time
frommultiple contributors, in fact, the majority of the package team.

4.2 Cost of Dependency Bugs
With the above two observations, we have to admit that even if
the dependency bugs are conceptually simple, they must induce a
noticeable cost on the development project, with so many discus-
sions being centered around them, involving so many contributors.
We investigate this issue deeper by the intensity of discussions on
dependency bugs, their reach.

Many dependency bugs discussions are very short. A developer
reports a problem, and another (or the same one) fix it. Significant
outliers exist though. A dependency issue report in ROS-Industrial
core component14 has turned into a 22-post long debate with many
references from (and thus repercussions in) other threads. The dis-
cussion involved two most senior developers in the ROS-Industrial
community, and revolved about major architectural choices. Since
dependencies are used to enforce and materialize the system and
ecosystem architecture, this is bound to happen once in a while.

We measured the lengths of discussions for the manually labeled
dependency bugs and compared them to the average lengths of
bug discussions in ROS. The average discussion of dependency
bugs includes 4 comments, including the first report, with the stan-
dard deviation of 4.09; This number is 2.92 ± 3.42 for the entire
population of bug discussions in ROS Melodic projects. Figure 2
summarizes the Bayes analysis for the two populations. The left
graph shows the posterior probability of differences between pa-
rameters of geometric distributions learnt from the treatment group
(dependency bug discussions) and the control group (all other bug
discussions). In the right, we see the posterior difference between
the actual discussions length in the two groups. In both cases, the
14https://github.com/ros-industrial/industrial_core/issues/46

difference zero lies outside the 0.95 credible interval, so we reject
the null hypothesis that two datasets could have been generated by
the same distribution.
Observation 9. Dependency issues in ROS attract more discus-
sions than other issues (on average), and the duration of these
discussions is more diverse, which indicates more long outliers.

Our qualitative inspection of discussions reveals participation of
many senior community members. Senior members tend to identify
and fix issues quickly. A common picture is a senior contributor re-
porting a dependency issue, immediately followed by a pull request.
However seniors also get involved debugging and fixing depen-
dency issues reported by novices. Many dependency discussions
can also be seen on ROS answers,15 a StackOverflow-like online
community for ROS, where novices ask questions and seniors re-
spond. Thus, even though, that dependency issues are a big problem
for novice contributors, they do generate a significant cost for the
key project members.

Observation 10. Dependency issues generate a considerable in-
teraction noise for senior community members.

5 RQ3: FINDING DEPENDENCY BUGS
A lot is to be learnt about bugs by building bug finding tools. The
tool builder perspective is different than that of a programmer.

5.1 Method
We settled to prototype three ad hoc linters,16 for runtime depen-
dency bugs. Runtime bugs are interesting as they may strike in the
relatively late life cycle phases, even after the package is released,
on users’ machine. We looked into historical bugs in the ROBUST
database [24] and identified three kinds of runtime dependency er-
rors for inspiration: missing runtime dependencies for shell scripts,
missing runtime dependencies for Python imports, and missing
runtime dependencies for system configuration and startup files.
These three appeared relatively generic, in the sense that any com-
plex system could experience them, albeit with different concrete
file formats. The impedance between the deployment manifests
and other scripts is likely a common experience.

We wanted to to build simple tools, as project-specific tools need
to be developed on a limited budget. After the linters had been
built, we ran them on the head of the development branch of all
406 packages in ROS Melodic Morenia, as of 2019/4/3. We explain
in detail, what kinds of bugs are found by these linters, how the
linters work, how complex they are, and how well they perform,
and what this experience teaches us about dependency bugs.

5.2 Prototype Bug Finders
For each linter we report: (i) the category of bugs it finds, (ii) an
example bug in ROS Melodic, and (iii) how the linter has been built.

Shell Script Dependency Bugs. ROS packages use shell scripts to set
up or to run system commands as part of installation and operation.
If a program used in a script is not installed the execution fails,
possibly leaving the package in an inconsistent state. This raises
15http://answers.ros.org
16Source available at: https://github.com/itu-square/ROS-Dependency-Checkers

https://github.com/ros-industrial/industrial_core/issues/46
http://answers.ros.org
https://github.com/itu-square/ROS-Dependency-Checkers
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#/bin/bash
source $ROS_ROOT/../rosbash/rosbash
roscd cob_script_server/src
ipython -i cob_console.py

(a) An example script from the cob_script_server package in ROS

<package>
<name>cob_script_server</name>
<version>0.5.1</version>
<description>The cob_script_server package provides a simple
interface to operate Care-O-bot...
...
<run_depend>rospy</run_depend>
<run_depend>message_runtime</run_depend>
<run_depend>actionlib</run_depend>
<run_depend>actionlib_msgs</run_depend>
<run_depend>tf</run_depend>
<run_depend>std_msgs</run_depend>
<run_depend>cob_srvs</run_depend>
<run_depend>trajectory_msgs</run_depend>
<run_depend>geometry_msgs</run_depend>
<run_depend>control_msgs</run_depend>
<run_depend>move_base_msgs</run_depend>
<run_depend>cob_sound</run_depend>

+ <run_depend>ipython</run_depend>
</package>

(b) The package manifest for cob_console. The missing dependency
on ipython is added in the line marked with +

Figure 3: A dependency bug involving a shell script

a missing dependency bug—row 2, 5, or 7 of Table 1, depending on
what the broken shell script is used for. The used program must be
explicitly listed in the manifest file (package.xml in ROS), so that
the installation system (rosdep) can install it as a prerequisite.

Figure 3 presents an actual example of such a bug in the package
cob_script_server from the Care-O-Bot stack. The script (Fig. 3a)
invokes the ipython interpreter in the very last line, but the mani-
fest (Fig. 3b) has no runtime dependency on ipython. The script
crashes with a ‘command not found’ error when executed.

In order to detect such bugs we need to identify the programs
invoked in scripts. As bash scripts are executed line-by-line, we
assume that each command is placed on its own line (true for major-
ity of scripts). We use a parser17 to generate ASTs and query them
for commands. Then we check this list against package.xml and
the list of available commands in a minimal ROS installation in an
official Docker container. Any missing names are flagged as errors.
The implementation of the prototype is 132 lines of TypeScript code.

Python Dependency Bugs. A Python import resembles dynamic link-
ing: it makes a library available or raises a runtime exception. An
exception may leave the package or the robot in an inconsistent or
unsafe state. Listing all imported modules in the package manifest
ensures that they are installed along with the package itself.

Figure 4a shows a program from the package cob_command_gui
of the Care-o-Bot stack. The program imports modules pygtk, gtk,
and pynotify; all missing in the manifest package.xml (Fig. 4b).
This program may fail with an exception on the first invalid import.

Python imports can be analyzed by generating ASTs, isolating
imported modules and checking these against the built-in system
modules in a minimal installation and the list in package.xml. Our

17https://github.com/vorpaljs/bash-parser

#!/usr/bin/python
# Project name: care-o-bot
# ROS package name: cob_command_gui
# Implementation of ROS node for command_gui.
import roslib
roslib.load_manifest('cob_command_gui')
from cob_msgs.msg import EmergencyStopState
from command_gui_buttons import *
import thread
import pygtk
pygtk.require('2.0')
import gtk
import roslib
import os
import pynotify
import sys
import signal

planning_enabled = False ...

(a) A Python program importing pygtk, gtk, pynotify (abbreviated)

<package>
<name>cob_command_gui</name>
<version>0.5.1</version>
<description>This package provides a simple GUI

for operating Care-O-bot.</description>
<license>LGPL</license>
<url type="website">http://www.ros.org/wiki/cob_command_gui</url>
...
<buildtool_depend>catkin</buildtool_depend>
<run_depend>rospy</run_depend>
<run_depend>cob_script_server</run_depend>
<run_depend>cob_relayboard</run_depend>
<run_depend>python-pygraphviz</run_depend>

+ <run_depend>gtk</run_depend>
+ <run_depend>pygtk</run_depend>
+ <run_depend>pynotify</run_depend> ...
</package>

(b) The manifest file for cob_command_gui lacking (marked +) the de-
pendencies imported by the Python script above

Figure 4: Runtime dependency missing: imports in Python

implementation of this idea takes about 10 lines of Python and 50
lines of shell script. It uses an external Python analyzer, flake8.18

Launch File Dependency Bugs. A launch file in ROS is a script in
a DSL (XML-based) that defines the configuration of the system,
composes the necessary nodes, and starts them up. Launch files are
executed by an interpreter, roslaunch, which calculates arguments
and passes them to the invoked parts of a ROS-based system. Pack-
ages use the find directive in the launch files to resolve locations of
other packages and of their launch files. If a dependency is accessed
in a launch file (i.e., via the find directive) but not declared in the
package.xml, it will not be present in the runtime system, and the
launching of the robot software will fail.

Figure 5 shows an example of such a bug in a driver for a Uni-
versal Robot arm. The launch scripts configures a simulator node
(under some conditions), and the physical robot (otherwise, not
shown). However the simulator package is not a dependency in the
manifest file, so it will not be automatically installed on machines
of developers using this package. As soon as they start the driver
node with the simulator argument, the system will crash.

18https://gitlab.com/pycqa/flake8

https://gitlab.com/pycqa/flake8
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<launch>
...
<!-- the "sim" argument controls whether we connect to -->
<!-- a Simulated or Real robot -->
<!-- - if sim=false, a robot_ip argument is required -->
<arg name="sim" default="true" />
<arg name="robot_ip" unless="$(arg␣sim)" />
<!-- load robot specific joint names -->
<rosparam command="load"

file="$(find␣ur5_moveit_config)/config/joint_names.yaml"/>
<!-- load the robot_description parameter -->
<include
file="$(find␣ur5_moveit_config)/launch/planning_context.launch">
<arg name="load_robot_description" value="true" />

</include>
<!-- run the robot simulator and action interface nodes -->
<group if="$(arg␣sim)"><include
file="$(find␣industrial_robot_simulator)/launch/....launch"/>

</group>
...

(a) The launch file moveit_planning_execution.launch configuring
the industrial robot simulator node (last lines)

<package>
<name>ur5_moveit_config</name>
...
<run_depend>moveit_ros_move_group</run_depend>
<run_depend>moveit_simple_controller_manager</run_depend>

+ <run_depend>industrial_robot_simulator</run_depend>
...

(b) The package manifest missing dependency declaration on the
industrial robot simulator

Figure 5: Launch dependency bug in a driver for a robot arm

We build a linter for this class of bugs, following the procedure
from the previous two examples. First, we identify the find objec-
tives in launch files using an XML parser (lxml). Then we compare
them against the dependencies available in the minimal ROS instal-
lation and those listed in the package manifest. The implementation
takes 109 lines of Python code.

Observation 11. Since most dependency bugs are relatively sim-
ple, it is feasible to script lightweight syntactic linters at rather low
cost, acceptable for any sizable project.

It appears that we cannot even build a single checker for runtime
dependency bugs (see above), as the linters depend heavily on the
kinds of artifacts that host the dependencies. Thus each entry in
Table 1 may require many linting procedures in practice.

Observation 12. The linters depend heavily on project-specific file
layout and deployment information, thus it is difficult to generalize
these tools to apply to a wider set of ecosystems.

Table 4: Running the linters on 406 packages of ROSMelodic

Linter Relevant packages (out of 406) #found bugs

Shell script dependencies 65 5
Python import dependencies 204 0
Launch file dependencies 174 5

5.3 Results
Table 4 summarizes the results of running the three above linters on
all packages in the ROS Melodic distribution. The second column
lists how many packages were relevant for the linter: how many
contained (respectively) any shell scripts, any Python programs,
and any launch files. The first and the last linter find five new bugs
each. The Python linter finds no bugs (on the day of running the
experiment). We assessed that all the found issues are real, but
three were deemed very minor. We have reported seven issues to
the project issue trackers. Of these seven, four issues have been
fixed, one was rejected, and two remain open as of today.

What do we learn from this? Even though we have built the
three bug finders based on historical bugs, we have no guarantee
that these bugs are frequent. Building a dependency tool may yield
good results, but understanding which tool to build is hard. This is
especially so as measuring frequency of detailed kinds of historical
bugs is very tedious—in fact, more laborious than scripting linter
procedures for many of them.

Observation 13. It may be relatively easy to script project-specific
linters for dependency bugs, however it is challenging to decide
which linters should be implemented to maximize the benefit.

6 VALIDITY
Internal Validity. Our experiments are approximate and limited. We
classified only 224 out of 1354 bug-tagged issues in ROS Melodic,
using keyword matching. We implemented linter prototypes only
for some bugs. To mitigate the first issue we used substring search
and simple statistical estimation to automatically analyze all 1354
issues. Mitigating the second issue is difficult, and requires building
a research agenda on general bug finders for dependency bugs.

Building the taxonomy in Table 1 proceeded in parallel with
coding. All but two out of 22 codes have been identified in the first
three iterations. The largest fourth iteration (about half of the coded
positive cases) only added two codes, and no new groupings. We
believe that this is a sign of saturation; all large categories of depen-
dency bugs in ROS have been spot. It is possible that other systems
display other categories. The taxonomy might be inexhaustive.

Not all top GitHub projects (Section 4.1) are software projects.
To mitigate this, we selected only software projects, filtering out
teaching and political material, and various catalogs.

The constructed linters are neither sound or complete. We re-
ported the 10 issues and we received confirmation (with varying
levels of severity).

External Validity. This is a case study of dependency bugs in ROS,
with limited experiments outside. Most observations are strictly
ROS-specific, until proven otherwise. Other subject ecosystems
could lead to different conclusions. Still, ROS is a rather large and
diverse ecosystem, with heavy use of both static and dynamic pro-
gramming languages, along with multiple project-specific DSLs,
generated and interpreted code, runtime introspection, modeling
tools, driver software, AI components, with both user-oriented
graphical tools and headless components. It is concurrent and dis-
tributed, synchronous, asynchronous, reactive. As such, it reflects
modern software systems reasonably well. We believe that similar
studies performed on other platforms would lead to similar results.
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7 RELATEDWORK
Software bugs have been studied extensively [2, 11, 15, 26, 27].
Many studies focus on particular categories of bugs, such as de-
sign flaws [4], security holes [21], variability [1], or floating-point
bugs [7]. These studies illustrate severity and characteristics of the
bug categories, and drive much research in building automated
tools or methodologies, such as static or dynamic analyses [5, 8].

However, research on dependency bugs is rare. Kerzazi et al. [13]
study failures of automated builds. Our assessment of the situation
is consistent with theirs, however we note that only about half of
the observed problems manifest at build time; dependency bugs
reach further than build. We have previously shown that supporting
developers in debugging cross-language links reduces bugs of this
kind [18]. Resolving dependencies is similar to name resolution as
formalized by Neron and coauthors [17]. Their theory might be a
good starting point towards a general solutions to dependency prob-
lems. Handling dependencies is a known subject in software config-
uration management [14, 20]. None of these work provides a thor-
ough study of dependency bugs comparable to the presented one.

Large ecosystems, such as Android and Linux, provide an inter-
esting study ground for bug studies [1, 6]. ROS is another complex
software system involving multiple languages and DSLs, hardware
interfaces, and non-determinism [19]. Not much has been written
on bugs in ROS though. Kate et al. propose a tool for detecting errors
in use of physical units in calculations in ROS [12]—a rather differ-
ent problem; within, not across, programming languages and pack-
ages. HAROS aggregates and interfaces several off-the-shelf static
checkers for ROS [23]. It extracts an abstract model of a ROS project,
which has been used to execute empirical studies [22]. We believe it
could support implementation of linters and further empirical stud-
ies. None of these reports discusses the dependency bugs though.

Our linters are pattern-based analyzers akin to Pylint19 and
FindBugs [10]. They are designed to be lightweight, scaling to the
entire ROS codebase, unlike traditional static analyzers based on
abstract execution of program semantics [16].

8 CONCLUSION
We presented a study of dependency bugs in ROS, a rich large
open source ecosystem for robotics. Despite relative simplicity, the
dependency bugs are surprisingly common phenomenon in com-
mitted code (∼15% bug reports). They disturb multiple developers,
often involving senior community members. We prototyped build-
ing simple linters, and observed that they do find bug instances in
real code, yet it is hard to predict which linters will be effective.
Despite being data-driven, one of our linters found no bugs.

We hope to attract the attention of the research community to
dependency bugs. We posit that the redundancy of specification of
dependencies, and the impedance between the different specifica-
tion locations, is common also outside ROS (in pip, gem, Eclipse
OSGI, apt, etc.). It is an annoying and time consuming problem;
conceptually simple, and, unlike many other correctness issues in
software, possibly feasible to eliminate. On the other hand, it is an
evil problem: many aspects of it are specific to the software archi-
tecture and tools at hand. This makes it hard to produce general
tools and general results for finding and fixing these bugs.
19https://www.pylint.org, seen Feb 2020
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