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Modularly Combining Numeric Abstract
Domains with Points-to Analysis,

and a Scalable Static Numeric Analyzer for Java

Zhoulai Fu ?

Université de Rennes 1 – INRIA, France

Abstract. This paper contributes to a new abstract domain that com-
bines static numeric analysis and points-to analysis. One particularity of
this abstract domain lies in its high degree of modularity, in the sense
that the domain is constructed by reusing its combined components as
black-boxes. This modularity dramatically eases the proof of its sound-
ness and renders its algorithm intuitive. We have prototyped the abstract
domain for analyzing real-world Java programs. Our experimental results
show a tangible precision enhancement compared to what is possible by
traditional static numeric analysis, and this at a cost that is comparable
to the cost of running the numeric and pointer analyses separately.

1 Introduction

Static numeric analysis – that approximates values of scalar variables and their
relationship – has drawn on a rich body of techniques including abstract domains
of intervals [9], polyhedron [13] and octagons [24] etc. which have found their way
into mature implementations. In a similar way, the analysis of properties describ-
ing the shape of data structures in the heap has flourished into a rich set of points-
to and alias analyses which also have provided a range of production-quality an-
alyzers. However, when extending numeric analyses to heap-manipulating pro-
grams we are immediately faced with the issues that pointers introduce aliases
which make program reasoning difficult because understanding the communica-
tion between numeric properties and dynamic data structures is needed. This
gives rise to the problem of combining static numeric analysis and heap analysis.

The combination of the two analyses has been studied, but the solutions
proposed so far tend to be complex to implement or impractical to analyze
large programs. For example, Simon [27] shows how to combine ad hoc numeric
abstract domains with manually refined flow-sensitive points-to analyses. His
combination approach requires extensive experiences and intimate familiarity
with the abstract domains themselves, thereby hard to implement. Miné’s ab-
straction [23], by contrast, is designed to be modular. The purpose was to lift
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existing abstract domains in ASTREE [3] developed with several man-years to
cope with pointer-aware programs. Reusing existing components as modules is
particularly important in that context. However, Miné’s framework is based on
type-based pointer analysis, which is cheap but too coarse by its nature. This
prohibits the general practicability of the Miné’s analysis. At the other extreme,
shape-analysis [26] based approaches come with sophisticated pointer analyses
and can indeed infer non-trivial properties. However, analyses that are based on
shape abstraction can hardly (see [5, 32] for exceptions) run on large programs.

Different from the work mentioned above, our objective is to develop a com-
bined analysis satisfying the following requirements:

– Modular design: The combined analysis should enable the reusing of ex-
isting analyses that have been developed since decades. The construction of
the combined analysis should only depend on the interfaces, not the specific
implementations, of its components.

– Scalability: We are seeking a tool that runs on codes of hundreds of thou-
sands of lines. We examine the feasibility of our analysis over moderate and
large sized benchmarks, and ensure that the combined analysis only presents
small complexity overhead compared with its component analyses.

– Precision: Although the query of scalability inevitably demands a sacrifice
on precision, we inspect that the combined analysis has to be, at least, as
precise as its components.

The core contribution of this work is a theoretical foundation that combines
in a generic manner

– an abstract domain dedicated to static numeric analysis of programs without
allocations, and

– an abstract domain for points-to static analysis.

On the practical side, we have implemented the abstract domain, using the Java
Optimization Framework SOOT [29] as the front-end, and relying on the abstract
domains from existing static analysis libraries such as the Parma Polyhedra
Library PPL [1] and the SOOT Pointer Analysis Research Kit SPARK [20].
This prototype analyzer, called NumP, has been run on all 11 programs in the
Dacapo-2006-MR2 [4] benchmark suite. The suite is composed of moderate and
large sized program with rich object behaviors and demanding memory system
requirements. Our experiments confirm that the combined analysis is feasible
even for large-sized programs and that it discovers significantly more program
properties than what is possible by pure numeric analysis, and this at a cost that
is comparable to the cost of running the numeric and pointer analysis separately.

1.1 Organization of the paper

The interfaces of traditional numeric and pointer analyses are specified in Sect. 2.
The intuition of our analysis is illustrated with a small example in Sect. 3. In
Sect. 4, we define the modeled language and its concrete semantics. The abstract



domain and its operators are presented in Sect. 5. Experimental results are shown
in Sect. 6. Finally, we compare our analysis with related work and conclude in
Sect. 7 and 8.

The formal underpinning and semantic correctness of the combination technique
are presented in the author’s Ph.D. thesis [17].

2 Analysis Interfaces

This section is define the interfaces of two existing analysis, static numeric anal-
ysis and points-to analysis.

General notation. For a given set U , the notation U⊥ means the disjoint union
U∪{⊥}. Given a mapping m ∈ A→ B⊥, we express the fact that m is undefined
in a point x by m(x) = ⊥.

Syntactical notations. Primary data types include: scalar numbers in I, where I
can be integers, rationales or reals; and references (or pointers) in Ref . Primary
syntactical entities include the universe of local variables and fields. They are
denoted by Var and Fld respectively. An access path is either a variable or a
variable followed by a sequence of fields. The universe of access paths is denoted
by Path. We subscript Varτ , Fieldτ , or Pathτ with τ ∈ {n, p} to indicate their
types as a scalar number or a reference, respectively. The elements in these sets
can also be sub-scripted with types. The types will be omitted if they are clear
from context.

We use Impn to refer to the basic statements only involving numeric variables
and use the meta-variables sn to range over these statements. Similarly, we let
Impp be the statements that only use pointer variables and let sp range over
these statements. Below we list the syntactical entities and meta-variables used
to range over them.

k ∈ I scalar numbers
r ∈ Ref concrete references
xτ , yτ ∈ Varτ numeric/pointer variables
fτ , gτ ∈ Fieldτ numeric/pointer fields
uτ ,vτ ∈ Pathτ numeric/pointer access paths
sn ∈ Impn xn = k | xn = yn | xn = yn � zn | xn ./ yn
sp ∈ Impp xp = new | xp = yp.fp | xp = yp | xp.fp = yp

where � ∈ {+,−, ∗, /}, and ./ is an arithmetic comparison operator.

2.1 Static numeric analysis

Static numeric analysis can be modeled as an abstract interpretation of Impn.
We use the term numeric property [22] for any conjunction of formula in

a certain theory of arithmetic. For example, the numeric property {x2 + y2 ≤



1, x ≤ 0, y ≤ 0} is composed of the conjunction of three arithmetic formulas
As usual, an environment maps variables to their values. We consider numeric
environments:

Num , Varn → I⊥ (1)

The relationship between an environment and a property can be formalized by
the concept of valuation. We say that n is a valuation of n], denoted by

n |= n] (2)

if n] becomes a tautology after each of its free variables, if any, has been replaced
by its corresponded value in n.

Definition 1 (Interface of the traditional numeric analyzer).

(Impn, ℘(Num), [|·|]\n , γn,Num], [|·|]]n)

The concrete numeric domain and the abstract numeric domain for the language
Impn are ℘(Num) and Num] respectively. They are related by the concretization
function γn : Num] → ℘(Num) defined by γn(n]) = {n ∈ Num | n |= n]}.

The partial order v is consistent with the monotonicity of γn, i.e., n]1 v n]2
implies γn(n]1) ⊆ γn(n]2). For each statement sn of Impn, the concrete seman-

tics is given by a standard transfer function [|sn|]\n ∈ ℘(Num) → ℘(Num). The

abstract semantics [|·|]]n satisfies the soundness condition:

[|·|]\n ◦ γn ⊆ γn ◦ [|·|]]n (3)

At last, we assume the availability of a join operator t and a widening operator
5. The join operator is assumed to be sound with regard to the partial order v,
and the soundness of 5 is specified in [10].

2.2 Pointer analysis

Pointer analysis can be modeled as an abstract interpretation of Impp.
Let Pter be the set of concrete states in Impp. Traditionally, a state p ∈ Pter

is a pair of environment and heap. We write p to range over them.

p ∈ Pter , (Varp → Ref ⊥)× ((Ref × Fldp)→ Ref ⊥) (4)

The essence of pointer analysis is the process of heap disambiguation, i.e., the
analysis partitions Ref into a finite set H and then summarizes the run-time
pointer relations via elements h inH. The process is based on the naming scheme.

Definition 2. The naming scheme is a mapping from concrete references to
their names in H. The names used by the naming scheme of a pointer analysis
are called abstract references or abstract locations.

B ∈ Ref → H (5)



We say r ∈ Ref is abstracted by h ∈ H if r B h. It is required that the mem-
ory regions abstracted by different abstract references have no common concrete
reference. ∀h1, h2 ∈ H,h1 6= h2 ⇒ B−1(h1) ∩B−1(h2) = ∅.

This paper considers points-to analysis [15] that is widely used in heap analy-
sis. The lattice used in the points-to abstract domain is commonly called points-
to graph. This graph has two kinds of arcs, the unlabeled arcs from a variable
to an abstract reference and the labeled arcs between abstract references that
are labeled by a field. The abstract domain used in points-to analysis is a set of
points-to graphs, denoted by Pter ].

Pter ] , (Varp → ℘(H))× ((H × Fldp)→ ℘(H)) (6)

Remark 1. Points-to analysis is based on a naming scheme that is flow inde-
pendent. In other words, a given analysis pass of points-to analysis allows for a
unique naming scheme, whatever the abstractions of the heap. It is worth noting
that this property on the naming scheme is respected by all variants of points-to
analysis (including flow-sensitive points-to analysis). In this presentation, we use
a typical naming scheme to name heap elements after the program point of the
statement that allocates them.

Definition 3 (Interface of traditional points-to analyzer).

(Impp, ℘(Pter), [|·|]\p , γp,Pter ], [|·|]]p)

The concrete domain and the abstract domain of points-to analysis are denoted
by ℘(Pter) and Pter ] respectively. They are related by a monotone concretiza-
tion function γp : Pter ] → ℘(Pter). The concrete semantics is interfaced by a

standard transfer function [|·|]\p ∈ ℘(Pter) → ℘(Pter ]). The abstract semantics

[|·|]]p ∈ Pter ] → Pter ] is provided by a static numeric analyzer. This analyzer is
assumed sound:

[|·|]\p ◦ γp ⊆ γp ◦ [|·|]]p (7)

3 Combining Points-to and Numeric Analysis: Intuition

This section presents the intuition behind the technique of combining points-to
analyses and numeric analyses. The idea is to use the names computed by the
points-to analysis to create summarized variables that represent the numeric
values stored at particular heap locations.

Example 1. Consider the Java snippet in Listing 1.1. An abstract class Unsigned
uses unsigned numbers to represent both positive and negative values. Unsigned
has two subclasses Pos and Neg for this purpose. It is the responsibility of clients
to ensure the underlined contract, i.e., the objects of type Unsigned must hold
non-negative values. The Java source code takes an array buf and passes the



elements to the list elem of type List. The list has a field item for data type
Unsigned and a field next of type List. The compound condition structure (l. 7-
14 in Listing 1.1) creates an object of class Pos or Neg according to whether n is
positive or not. In both cases, data.val is assigned to the absolute value of n so
that the assumed property of unsignedness can be preserved. From l. 15 to l. 19,
the program allocates a new cell to store data and links it to the list created by
the precedent iteration.

Below we show how we infer the following properties at the end of the program
(l. 21).

– Prop1 Each list element of is in the range of 0 to 9:

∀l ≥ 0, hd.nextl.item.val ∈ [0, 9]

– Prop2 Each array element of buf is in the range of -9 to 7: buf [∗] ∈ [−9, 7].

1 int [ ] buf = { - 9 ,7 ,3 , - 5} ; // h1

2 Unsigned data = null ;
3 L i s t hd = null ;
4 int idx = 0 ;
5 while ( idx < buf . l ength ){
6 int n = buf [ idx ] ;
7 i f (n > 0){
8 data = new Pos ( ) ; // h2

9 data . va l = n ;
10 }
11 else {
12 data = new Neg ( ) ; // h3

13 data . va l = - n ;
14 }
15 L i s t elem = new L i s t ( ) ; // h4

16 elem . item = data ;
17 elem . next = hd ;
18 hd = elem ;
19 idx = idx + 1 ;
20 }
21 return ;

Listing 1.1: A Java snippet

1 δh1,[∗]
.
= - 9 ;

2 δh1,[∗]
.
= 7 ;

3 δh1,[∗]
.
= 3 ;

4 δh1,[∗]
.
= - 5 ;

5 idx = 0 ;
6 while ( ? ){
7 n

.
=
′
δh1,[∗] ;

8 i f (n > 0)
9 δh2,val

.
= n ;

10 δh3,val
.
= n ;

11 else
12 δh2,val

.
= - n ;

13 δh3,val
.
= - n ;

14 idx = idx + 1 ;
15 }
Listing 1.2: Semantics actions

Fig. 1: An example in Java. The program passes an array of integers to a list of Unsigned
numbers. Unsigned is a superclass of Pos and Neg. It has one field val of integer type.
The class List has two fields, item of type Unsigned, and next of type List.

We start with a flow-insensitive points-to analysis. A single points-to graph
for the whole program can be obtained (Fig. 2). Semantically, the points-to graph



disambiguates the heap by telling what must not alias. We derive a summarized
variable δh,val for each pair of heap location h and field val. The key point is,
numeric values bound to syntactically distinct summarized variables are guaran-
teed to be stored at different concrete heap locations. In line with the semantics
of points-to graph, the analysis of the program in Listing 1.1 can be treated as
an extended numeric analysis. This analysis is called “extended” because it not
only deals with scalar variables, but also deals with summarized variables.

Variable names buf

��

data

�� ##

elem

''

hd

��
Allocation sites h1 h2 h3 h4

next

kk
itemqq

item

jj

Fig. 2: A flow-insensitive points-to graph for the program in Listing 1.1.

Listing 1.2 illustrates the semantics actions taken by our analysis. From l. 1
to l. 4, the summarized variable δh1,[∗] is updated with −9, 7, 3 and −5 suc-
cessively. Since more than one run-time heap locations of the array buf can be
associated with δh1,[∗], the semantics action is a weak update (denoted by

.
=),

i.e., accumulating values rather than overwriting them. The semantics action at
l. 7 assigns the summarized variable δh1,[∗] to the scalar variable n. Note again
that this abstract semantics should be distinguished from the abstract semantics
of assignment in traditional numeric domain. This is because we should not es-
tablish a numeric relation between δh1,[∗] and n as in traditional static numeric

analysis. Here we use
.
=
′

to make a distinction. Intuitively, the assignment of
δh1,[∗] to n should be abstracted as assigning the possible values of δh1,[∗] to n
without coupling δh1,[∗] and n. The rest of the semantics actions in the listing
should be clear now. The assignments to scalar variables at l. 5 and l. 14 are the
same as in traditional numeric domains. The assignments at l. 9, 10, 12, 13 are
weak update to δh2,val and δh3,val since both h2 and h3 are pointed to by the
variable data following the points-to graph.

By performing the extended interval analysis, we are able to infer these invari-
ants at the end of the program: δh2,val ∈ [0, 9]∧δh3,val ∈ [0, 9] and δh1,[∗] ∈ [−9, 7],
which imply Prop1 and Prop2 respectively.

Remark 2. The compelling part of this approach should not be the semantics ac-
tions presented so far, but the way that they can be constructed by an interplay
between traditional numeric domains and points-to analysis. The advantage of
this approach is that this interplay does not requires knowledge beyond the in-
terfaces of the components in question. As demonstrated by our implementation
of the analysis and its experimental results, this approach allows for direct access
to many existing abstract domains including their join, widening and narrowing
operators which are known difficult to implement.



4 The Language and its Concrete Semantics

This paper focuses on how to deal with language Impnp. The statements in
Impnp include those in Impn and Impp, and two more statements in the forms of
yp.fn = xn and xn = yp.fn. We write snp to range over Impnp.

snp ::= sn | sp | yp.fn = xn | xn = yp.fn (8)

A concrete state in Impnp can be regarded as a pair of an environment and
a heap

State =

Env︷ ︸︸ ︷
(Varn → I⊥)× (Varp → Ref ⊥)

× ((Ref × Fldn)→ I⊥)× ((Ref × Fldp)→ Ref ⊥)︸ ︷︷ ︸
Heap

(9)

We can turn this domain into an isomorphic shape

State , Num[(Ref × Fldn) ∪Varn]× Pter (10)

where Num[(Ref × Fldn) ∪Varn] extends Num to (Ref × Fldn) ∪Varn)→ I⊥.

Remark 3. The isomorphism consists of a crucial step. It prepares the re-use
of the abstract pointer values when extending the numeric domains to cover
properties about heap values.

Regarding states as (10) allows us to express the concrete semantics of Impnp
via those of Impn and Impp. As a shortcut, we set

D = Ref × Fldn (11)

and use meta variable d to range over the pairs in D. In Fig. 3, we show the
structural operational semantics (SOS) of Impnp, denoted by −→\. It is expressed

by
Pter−→ and

Num−→ (with
Num−→ in the figure extended over D ∪Varn).

〈sn, n〉
Num−→ n′

〈sn, (n, p)〉−→\(n′, p)

d = (p(yp), fn) 〈d = xn, n〉
Num−→ n′

〈yp.fn = xn, (n, p)〉−→\(n′, p)

〈sp, p〉
Pter−→ p′

〈sp, (n, p)〉−→\(n, p′)

d = (p(yp), fn) 〈xn = d, n〉 Num−→ n′

〈xn = yp.fn, (n, p)〉−→\(n′, p)

Fig. 3: Structural Operational semantics −→\ : Impnp → ℘(State × State)

We use the lifting of−→\ to the powerset ℘(State). as the collecting semantics
of Impnp, denoted as

[|·|]\ , λs : Impnp.post[−→\(s)] (12)



5 The abstract domain

A state in our proposed abstract domain is a pair (n], p]), where n] is a numeric
property expressed via scalar variables of Varn and summarized variables (see
below) of the set H×Fldn; the element p] is a lattice of Pter ], namely, a points-to
graph in our context.

Definition 4 (Summarized variable). A summarized variable is a pair of an
abstract reference h ∈ H and a numeric field fn ∈ Fldn. The set of summarized
variables is denoted by ∆.

∆ , H × Fldn (13)

We will use the meta-variable δ to range over the pairs in ∆, or we write δh,fn
to indicate the summarized variable corresponding to (h, fn).

Definition 5 (The abstract domain NumP ]). The abstract domain NumP ]

is defined to be

NumP ] , Num][∆ ∪Varn]× Pter ] (14)

Below, we specify the concretization function. It consists of an essential step
before defining and proving the correctness of the abstract operators on NumP ].

Revisit the example in Sect. 3. We have obtained the state (n], p]) at the end
of the program, with

n] = {δh2,val ∈ [0, 9], δh3,val ∈ [0, 9], δh1,[∗] ∈ [−9, 7]} (15)

and p] is the points-to graph specified in Fig. 2. A concrete state (n, p) ∈ State
is in the concretization of (n], p]) if for any reference r,

– we have n(r, val) ∈ [0, 9] as long as r is abstracted by h2, i.e., r B h2, and
– we have n(r, val) ∈ [0, 9] as long as r is abstracted by h3, i.e., r B h3, and
– we have n(r, [∗]) ∈ [−9, 7] as long as r is abstracted by h1, i.e., r B h1

and p has to be a concrete state abstracted by p], i.e., p ∈ γp(p
]). By abuse

of language, we have treated the array index [∗] above as an aggregate numeric
field. In other words, we say (n, p) is in the concretization of (n], p]) if n is in
the concretization of all n]

′
that is the numeric property n] with each of its

summarized variables δ substituted by some d of Ref × Fldn (namely D) that
satisfies B(d) = δ (with B extended by taking care of numeric fields).

Definition 6 (Instantiation). Let B be naming scheme that is extended from
Ref → H to Ref × Fldn → H × Fldn. We define the space of instantiation as a
set of mappings from ∆ to D.

InsB , {σ : ∆→ D | σ(h, fn) = (r, gn) ⇒ h = B(r) ∧ fn = gn} (16)



Definition 7. The concretization function γnp of NumP ] → ℘(State) is defined
as

γnp(n
], p]) , {(n, p) | p ∈ γp(p]) ∧ ∀σ ∈ InsB : n ∈ γn ◦ [σ](n])} (17)

where we denote by [σ] the capture-avoiding substitution operator that replaces
all the free occurrences of δ in n] ∈ Num][∆ ∪Varn] with σ(δ).

Example 2. Consider the following program:

1 L i s t hd = null , tmp ;
2 int i ;
3 for ( i = - 17 ; i < 42 ; i ++){
4 L i s t tmp = new L i s t ( ) ; // a l l o c a t i o n s i t e h

5 tmp . va l = i ;
6 tmp . next = hd ;
7 hd = tmp ;
8 }

A list of integers ranging from −17 to 41 is stored iteratively on the heap. At
each iteration, a memory cell bound to variable tmp is allocated. The cell consists
of a numeric field val and a reference field next. The head of the list is always
pointed to by the variable hd.

The abstract memory state computed at the end of program is given by

(n], p]) =

(
{δh,val ∈ [−17, 41], i = 42}

tmp
hd

// h

next

QQ
)

(18)

5.1 Transfer functions

Let (n], p]) be a state of NumP ]. We are concerned with how it should be updated
by statements of Impnp.

Transfer function for sn It is sound to assume that assignments or assertions
of numeric variables have no effect on the heap. If sn is an assignment in Impn,
it can be treated in the same way as in traditional numeric analysis using its
abstract transfer function [|·|]]n (as specified in Sect. 2.1).

The transfer function for updating (n], p]) with sn can be defined as:

[|sn|]] (n], p]) , [|sn|]]n n
], p] (19)

If sn is an assertion in Impn, p] may be refined. For example, consider the
compound statement1 if (a > 0) p = q where p and q are reference variables
and a is a numeric variable. Although it should be possible to perform a dead-
code elimination using inferred numeric relations, similar to Pioli’s conditional
constant propagation [25], we still use the Eq. (19) for the ease of implementation.

1 This term is used here to be distinguished from basic statements as sn, sp or snp.
Note that sn is the assertion, not the whole if-statement.



Transfer function for sp It is also sound to assume that sp has no effect
upon n]. Yet the reasoning is different from the above case. For example, if
(n], p]) is the state shown on Eq. (18), how can we tell whether an assignment
of pointers operation modifies n] or not? Recall that the intended semantics of
δh,val → [17, 41] is that every value stored in each (r, val) satisfying B(r) = h
must be in the range of [−17, 41]. That is to say, n] represents a fact about the
numeric content stored in the corresponding concrete references. Since a pointer
assignment can by no means modify any numeric values stored in the heap, the
algorithm to update (n], p]) with sp can be written as:

[|sp|]] (n], p]) , n], [|sp|]]p p
] (20)

Transfer function of yp.fn = xn Consider an assignment yp.fn = xn with
yp pointing to h ∈ H. We regard yp.fn = xn as an weak update to summarized
variable δh,fn , That is, the field fn of one of the concrete objects represented
by h is to be updated with the value of xn, while the other concrete objects
represented by h remain unchanged. This effect can be approximated by λn].n]t
[|δh,fn = xn|]]n (n]). Below, we write

p] ` yp.fn ⇓ δ (21)

if δ is associated with (h, val) and yp points to h. The transfer function of
yp.fn = xn can be modeled by joining the effects of weak update of all δ by xn
such that p] ` yp.fn ⇓ δ.

[|yp.fn = xn|]] (n], p]) ,

 ⊔
p]`yp.fn⇓δ

n] t [|δ = xn|]]n (n])

 , p]

 (22)

Note that it is not necessary to compute transfer functions for assertions involv-
ing field expressions for they are transformed beforehand by our front-end SOOT
to assertions in Impn or in Impp. For instance, a source code if (x.f > 0) ...,
is transformed to a = x.f; if (a > 0) ... before our analysis.

Transfer function of xn = yp.fn Consider the snippet

a = x.f; b = y.f; if (a < b) {...}

Assume that p] ` x.f ⇓ δ and p] ` y.f ⇓ δ. It is tempting, but wrong, to abstract
the semantics of a = x.f (resp. b = y.f) as [|a = δ|]]n (resp. [|b = δ|]]n) following
which the analysis would incorrectly argue that the if branch can never be
reached.

This issue was carefully studied and solved by Gopan et al. [18]. The authors
showed that it would be wrong to correlate a summarized dimension δ to a non-
summarized dimension xn even if the former is assigned to the later; they argued
that the correct way to assign a summarized dimension δ to a non-summarized



dimension xn takes three steps: first, copy the summarized dimension δ to a fresh
δ′, and then relate xn with δ′ using traditional abstract semantics for assignment.
Finally, the newly introduced dimension δ′ has to be removed. Intuitively, the
resulting abstract value keeps the possible (abstract) values of δ without being
correlated with it. Gopan et al. have introduced four non-standard operators, in
particular, “drop” that removes dimensions, and “expand” that copies dimen-
sions. We use

[|xn = yp.fn|]] (n], p]) ,
⊔

p]`yp.fn⇓δ

G(xn, δ) n], p] (23)

where Gopan’s operator G(xn, δ) is the composition of the three steps described
above:

G(xn, δ) , λn].drop]δ′ ◦ [|xn = δ′|]]n ◦ expand]δ,δ′ n
] (24)

Above, we assume dimension δ′ does not belong to the dimensions of n] in
question.

Example 3. Let n] = δ → [0, 1]. Even if we use a relational domain like poly-
hedral analysis, only G(x, δ)n] = x → [0, 1], δ → [0, 1] can be obtained, while
traditional numeric domains would establish a relationship between x and δ.

Theorem 1 (Soundness). The transfer functions [|·|]] : Impnp → (NumP ] →
NumP ]), defined in (19), (20), (22) and (23), are sound with respect to [|·|]\: for

any statement s of Impnp and abstract state (n], p]) of NumP ], [|s|]\◦γnp(n], p]) ⊆
γnp ◦ [|s|]] (n], p]).

We give a proof sketch for the case of [|xp.fn = yn|]]. It is important to note that

the soundness of the theorem is based on the soundness hypotheses of [|·|]]n and

[|·|]]p. The combined analysis is sound as long as its component analyses are.

Proof. For all n] ∈ Num][∆ ∪Varn] and p] ∈ Pter ], we prove

[|xp.fn = yn|]\ (γnp(n
], p])) ⊆̇ γnp([|xp.fn = yn|]] (n], p])) (25)

By the definitions of [|xp.fn = yn|]\ and [|xp.fn = yn|]] and the monotony of γδ,
it is sufficient to show for any d such that γp(p

]) ` xp.fn ⇓ d, we have

[|d = yn|]\n ◦ γδ(n
]) ⊆ γδ(n] t [|δ = yn|]]n (n])) (26)

where we note δ = B(d).
By the definition of γδ, it is then sufficient to prove a stronger condition:

∀σ ∈ InsB : [|d = yn|]\n ◦ γn ◦ [σ](n]) ⊆ γn ◦ [σ](n]) ∪ γn ◦ [σ]([|δ = yn|]]n (n]))
(27)

Given an instantiation σ (as defined in Eq. (6)), we make two cases to con-
clude:



– Case I: σ does not map δ to d. By consequence d does not appear in [σ](n])

and [|d = yn|]\n ◦ γn ◦ [σ](n]) = γn ◦ [σ](n]). This concludes this case.
– Case II: σ maps δ to d. We can then simplify the right part of (27) because

[σ]([|δ = yn|]]n (n])) = ([|d = yn|]]n ◦ [σ](n])). We then conclude this last case

using the soundness of [|d = yn|]]n.

5.2 Join and widening

The join of two facts is defined as the set of all facts that are implied indepen-
dently by both. Thanks to our hypothesis of flow independent naming scheme
(in Sect. 2.2), the join and widening of NumP ] are easy to define: we just have to
compute the join (or widening) component wise. Then, if a concrete state (n, p)

is in γnp(n
]
1, p

]
1) or γnp(n

]
2, p

]
2), it is also in the concretization of (n]1tn

]
2, p

]
1∪p

]
2).

Thus the join of (n]1, p
]
1) and (n]2, p

]
2) is the join of n]1 and n]2, paired with the

join of p]1 and p]2 (Sect. 2). The case for widening is similar.

(n]1, p
]
1) t] (n]2, p

]
2) = (n]1 t n]2, p

]
1 ∪ p]2) (28)

(n]1, p
]
1)5] (n]2, p

]
2) = (n]1 5 n]2, p

]
1 ∪ p]2) (29)

5.3 Constraint system with a flow-insensitive points-to analysis

In our implementation, we use a flow-insensitive points-to analysis as a pre-
analysis step. It is worth nothing that using flow-insensitive variant does not
cause any soundness issue. This is because the soundness of our analysis is based
on the soundness of its component numeric domains and pointer analysis; taking
the flow-insensitive points-to graph during all propagation can be modeled as an
analysis that is initialized with a set that is larger than the least fix point of a
flow-sensitive analysis, and propagates in the style of skip, which satisfies the
soundness requirement for the pointer analysis component.

Let F ](s) , λn].fst ◦ [|s|]] (n], p]fi), where p]fi is the flow-insensitive points-
to graph, and fst is the operator that extracts the first element from a pair of
components. We use the following constraint system that operates on numeric
lattice n] only (rather than on (n], p]) pair):

n][l] w F ](s)(n][l′]) (30)

where we write n][l] (resp. n][l′]) for the numeric component of NumP ] at control
point l (resp. l′), l′ being the control point of statement s, and (l′, l) is an arc of
the program control flow.

Example 4. Consider the Java snippet in Fig. 4. From l. 4 to l. 10 is the same
as in the example program of Sect. 4. Since we do not propagate the points-to
graph here, the state at l. 10 is the numeric lattice n]0:

n]0 = {δh,val → [−17, 41], i→ 42,max→ >, n→ >} (31)



where three scalar variables i, max and n as well as a summarized variable δh,val
are involved. Note that the flow-insensitive points-to graph

p]fi =
tmp
hd
cur

// h

next

QQ (32)

is used in the process of propagation of states but the points-to graph itself will
keep unchanged (as formalized in (30)). From l. 14 to l. 21, the program finds
the maximal value from the list. This value is then stored in the variable max.
In case there is no positive value or the list is empty, max takes its initial value
0. We will show that at the end of the program, (l. 10):

– the scalar value max has to be in the range of [0, 41]

The propagation of states from lattice n]0 is shown in Fig. 5.

1 // c r e a t e a l i s t o f i n t e g e r s

2 L i s t hd = null , cur , tmp ;
3 int i , n , max ;
4 for ( i = - 17 ; i < 42 ; i ++){
5 L i s t tmp = new L i s t ( ) ;

// h

6 tmp . va l = i ;
7 tmp . next = hd ;
8 hd = tmp ;
9 }

10

11 // f i n d t h e maximum

12 cur = hd ;
13 max = 0 ;
14 while ( cur != null ){
15 n = cur . va l ;
16 i f (max < n){
17 max = n ;
18 }
19 cur = cur . next ;
20 }
21

Fig. 4: An example in Java. The class List has val and next as fields.

6 Experiments

We have implemented a prototype for the abstract domain NumP ]. The imple-
mentation is called NumP. This section presents the prototype and our experi-
mental results.

The input Java program is passed to SOOT. It computes the points-to graph
and transforms the program to Jimple IR [30]. The analysis combines the ab-
stract domains from PPL and the points-to analysis in SOOT. It infers numeric
properties for each program point of the IR.

The analyzer NumP combines PPL and SOOT in a modular way. We first
implement the traditional static numeric analyzer for Java. The implementation
is denoted by Num, which is implemented by wrapping abstract domains in



1 δ → [−17, 41], i→ 42, max→ >, n→ >
2 cur = hd ;
3 δ → [−17, 41], i→ 42, max→ >, n→ >
4 max = 0 ;
5 δ → [−17, 41], i→ 42, max→ 0, n→ >
6 while (hd != null ){
7 δ → [−17, 41], i→ 42, max→ 0, n→ >
8 δ → [−17, 41], i→ 42, max→ [0, 41], n→ >
9 n = hd . va l ;

10 δ → [−17, 41], i→ 42, max→ 0, n→ [−17, 41]
11 δ → [−17, 41], i→ 42, max→ [0, 41], n→ [−17, 41]
12 i f (max < n){
13 δ → [−17, 41], i→ 42, max→ 0, n→ [1, 41]

14 δ → [−17, 41], i→ 42, max→ [0, 41], n→ [1, 41]

15 max = n ;
16 δ → [−17, 41], i→ 42, max→ [1, 41], n→ [1, 41]

17 }
18 δ → [−17, 41], i→ 42, max→ [0, 41], n→ [−17, 41]
19 hd = hd . next ;
20 δ → [−17, 41], i→ 42, max→ [0, 41], n→ [−17, 41]
21 }
22 δ → [−17, 41], i→ 42, max→ [0, 41], n→ [0, 41]

Fig. 5: The propagation of states from l. 14 to l. 21 of the program in Fig. 4. The
fixpoint is reached in two steps.

PPL. Num either skips unrecognized statements or conservatively approximates
them using the unconstraint operator in PPL. The re-used components in
SOOT include notably the flow-insensitive points-to analysis (from its SPARK
toolkit [20]). This analyzer is denoted by Pter subsequently.

To demonstrate the effectiveness of our technique, we evaluate the analyzer
on Dacapo-2006-MR2 [4] benchmark suite. The experiments were performed on
a 3.06 GHz Intel Core 2 Duo with 4 GB of DDR3 RAM laptop with JDK 1.6.
We tested all 11 benchmarks in Dacapo.

Experimental results are shown in Tab. 1 using the interval domain Int64 Box

from PPL and the flow-insensitive points-to analysis from SOOT. The charac-
teristics of the benchmarks are presented by the number of analyzed Jimple
statements (col. 2, STATEMENT) and the number of write access statements
in the form of yp.fn = xn or yp.fn = k with k being a constant (col. 3, WA).

We measure PRCS (col. 4) for the number of the write access statements
after which the obtained invariants are strictly more precise than Num. Q PRCS
(col. 5) is the ratio of PRCS and WA

Q PRCS , PRCS/WA (33)

We record Q PRCS as the metric for precision enhancement of the analyzer.



Table 1: Evaluation of NumP on the benchmark suite Dacapo-2006-MR2

Benchmark Characteristics Precision Time
BENCHMARK STATEMENT WA PRCS Q PRCS T NUM T PTER T NUMP Q T

antlr 26776 766 174 23% 00m29s 00m53s 01m36s 117%

bloat 64328 2472 943 38% 01m35s 01m02s 16m33s 632%

chart 132627 10244 3690 36% 04m17s 13m20s 83m21s 473%

eclipse 56772 820 116 14% 00m46s 00m54s 01m52s 112%

fop 198541 23482 6166 26% 03m25s 05m11s 275m28s 3203%

jython 88302 2583 1356 52% 00m57s 01m04s 05m38s 279%

hsqldb 6286 352 10 3% 00m19s 00m49s 01m16s 112%

luindex 22192 1206 250 21% 00m33s 00m54s 01m31s 105%

lusearch 26711 1503 418 28% 00m38s 00m56s 01m35s 101%

pmd 80640 3675 1316 36% 00m50s 00m55s 04m25s 252%

xalan 5197 341 3 1% 00m16s 00m49s 01m12s 111%

Mean 64397 4313 1313 25% 01m17s 02m26s 35m52s 500%

The execution time is measured for Num, Pter and NumP (col. 8, 9 and 10).
The parameters T Num and T Pter are the times spent by Num and Pter when
they analyze individually. The parameter T NumP records the time spent our
combined analysis instantiated with the interval and flow-insensitive points-to
analysis.

The last column Q T evaluates the time overhead of our analyzer. It is com-
puted as the ratio of the time spent by our analysis to the total time spent by
its component analyses.

Q T , T NumP/(T Num + T Pter) (34)

The size of the analyzed Jimple statements ranges from 5, 197 (xalan) to
198, 541 (fop). The average precision metric is given in the last row of Tab. 1.
The mean Q PRCS (25%) shows a clear precision enhancement of our approach
over numeric analysis only. The time overheads Q T are generally acceptable.

In summary, we have designed an analysis in a modular way. It can be scaled
to real-life programs; analyzing programs of hundreds of thousands of lines within
hours can be a reasonable time budget for many applications. The precision
enhancement is validated in practice.

7 Related Work

Static analysis of numeric properties has been extensively studied, especially
in the framework of abstract interpretation [11]. While a large number of arti-
cles covers issues related to numeric abstractions, program analyses where both
pointers and numeric values are taken into account are comparatively few.

The back-end of CodePeer2 takes a flow-insensitive may-aliasing analysis to
distinguish heap objects and to transform the analyzed programs to their SSA

2 http://www.adacore.com/codepeer



forms using the global value numbering technique. The value propagation of
CodePeer infers the value ranges of subtraction of variables, in other words,
properties of the zone abstract domain. CodePeer goes further by taking care of
inductive loop variables and the disjunctive numeric constraints, so that proper-
ties such as b > 0⇒ a = 2 ∗ b can be inferred where a or b is an inductive scalar
variable. Compared with our approach, however, CodePeer uses a single zone
abstract domain and do not offer the flexibility to easily plug in other abstract
domains of different precision/cost tradeoffs such as the more efficient inter-
val abstract domain or the more precise polyhedral domain. In our approach,
even the capability of expressing disjunctive facts in CodePeer can be easily
implemented by instantiating our numeric domain component as the powerset
construction domains [2].

Efforts have been made to parametrize numeric domains with a dedicate
pointer analysis. Fähndrich and Logozzo’s Clousot analyzer [16] uses a value
numbering algorithm to compute an under-approximation of must-alias. An op-
timistic assumption is then made so that Clousot regards two access paths not
aliased if they do not have the same value numbering.3 The ASTREE static ana-
lyzer [3] relies on a type based pointer analysis to deal with numeric properties of
heap objects. The abstraction can be used with pointer arithmetic, union types
and records of stack variables in C programs that do not have dynamic memory
allocation or recursive structure. This category of static analyzers, as well as
ours, can be regarded as applications of the theory of abstract domain combina-
tion which has been thoroughly studied and applied in many other contexts [28,
12, 8].

A more sophisticated heap abstraction is shape analysis [26]. The TVLA [19]
framework based on shape analysis uses canonical abstraction to create bounded-
size representations of memory states. The analyses of this family are precise and
expressive. TVLA users are demanded to specify the concrete heap using first-
order predicates with transitive closure, or user-defined instrumentation predi-
cates like IsNotNull. Then TVLA automatically derives an abstract semantics
based on the users’ specification. The numeric abstraction of Gopan et al. [18]
allows the integration of TVLA with existing numeric domains. The static veri-
fier DESKCHECK [21] combines TVLA and numeric domains. It is sufficiently
precise and expressive to check quantified invariants over both heap objects and
numeric values. Besides the burden for users to specify the program (a problem
that XISA [7, 6] attempts to remedy), the major issue of the shape-analysis-
based approaches lies in their scalability. In contrast, our experiments show our
capability to run over large programs.

Pioli and Hind [25] show the mutual dependence of conditional constant anal-
ysis and pointer analysis. The combination is specifically designed for the con-
ditional constant analysis and is not generalized to standard numeric domains.
In particular, this approach does not directly cooperate with standard numeric

3 This assumption is said optimistic because it is possible two access paths alias at
run-time but are considered never aliased by Clousot.



domains because their method relies on the particular feature of conditional
constant analysis that is able to partially eliminate infeasible branches.

In a somewhat different strand of work, numeric domains have been used
to enhance pointer analysis. Deutsch [14] uses a parametrized numeric domain
to improve the accuracy of alias analysis in the presence of recursive pointer
data structures. The key idea is to quantify the symbolic field references with
integer coefficients denoting positions in data structures. This analysis is able to
express properties for cyclic structures such as “for any k, the k-th element of
list l of length len, is aliased to its (k + len)-th element”. Venet [31] develops
the structure called the abstract fiber bundle to formalize the idea of embedding
an abstract numeric lattice within a symbolic structure. The structure enables
the using of the large number of existing numeric abstractions to encode a broad
spectrum of symbolic properties.

8 Conclusion

The primary objective of this work has been the automatic discovery of numeric
invariants in Java-like programs, which are generally pointer-aware. We have
proposed a methodology for combining numeric analyses and points-to analysis,
developed using an approach based on concepts from abstract interpretation. In
particular, we have shown how the abstract domain used in points-to analysis
can be used to lift a numeric domain to encompass values stored in the heap.
The new abstract domain and the accompanying transfer functions have been
specified formally and their correctness proved. Moreover, the modular way in
which the abstract domains are combined via some well-defined interfaces is
reflected in the modular construction of a prototype implementation of the anal-
ysis framework. This modularity has enabled us to experiment with different
choices for the tradeoff between efficiency and accuracy by tuning the granular-
ity of the abstraction and the complexity of the abstract operators. Concretely,
the derived abstract semantics allows us to combine existing numeric domains
(interval domains, octagon etc.) with existing points-to analyses. The modular
analyzer is able to combine advanced libraries as PPL and SPARK and it shows
a clear precision enhancement with low time overhead.
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Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and
Applications, pages 169–190, New York, NY, USA, October 2006. ACM Press.

5. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. J. ACM, 58(6):26, 2011.

6. Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In
POPL, pages 247–260, 2008.

7. Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis with
structural invariant checkers. In SAS, pages 384–401, 2007.

8. Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combina-
tions of abstract domains for logic programming: open product and generic pattern
construction. Sci. Comput. Program., 38(1-3):27–71, 2000.

9. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130. Dunod, Paris, France, 1976.

10. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL, pages 238–252, 1977.

12. Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. The reduced product of
abstract domains and the combination of decision procedures. In FOSSACS, pages
456–472, 2011.

13. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–96, 1978.

14. A. Deutsch. A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In ICCL, pages 2–13, 1992.

15. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function pointers. In PLDI, pages
242–256, 1994.

16. Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In FoVeOOS, pages 10–30, 2010.

17. Zhoulai Fu. Static Analysis of Numerical Properties in the Presence of Pointers.
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24. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

25. Anthony Pioli and Michael Hind. Combining interprocedural pointer analysis and
conditional constant propagation. Technical report, IBM T. J. Watson Research
Center, 1999.

26. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’99, pages 105–118, New York, NY,
USA, 1999. ACM.

27. A. Simon. Value-Range Analysis of C Programs. Springer, August 2008.
28. Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. Reduced product

combination of abstract domains for shapes. In VMCAI, pages 375–395, 2013.
29. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. Soot - a java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative research,
CASCON ’99, pages 13–. IBM Press, 1999.

30. Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for
analyses and transformations. Technical report, Sable Research Group, McGill
University, July 1998.

31. Arnaud Venet. Towards the integration of symbolic and numerical static analysis.
In VSTTE, pages 227–236, 2005.

32. Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In
CAV, pages 385–398, 2008.


